Answers to Selected Problems

Chapter 1 Analysis of Stress

1.1. P = 4.27 kN

1.4. P = 32.5 kN, θ = 26.56°

1.5. σx′ = −13.15 MPa, τx′ y′ = −15.67 MPa

1.6. F = 67.32 kN/m3

1.9. Fx = Fy = Fz = 0

1.10. (a) σ1 = 121 MPa, σ = −71 MPa, τmax = 96 MPa

σ1 = 200 MPa, σ2 = −50 MPa, τmax = 125 MPa

(b) Image

1.15. (a)σx = 38.68 MPa, σy = 12.12 MPa, τxy = 7MPa

(b)σ1 = 40.41 MPa, σ2 = 10.39 MPa, Image

1.18. P = 3πpr2

1.24. (a)σ = −0.237τo, τ = 0.347τo

(b)σ1 = 3.732τo2 = −0.268τo, Image

1.26. σ1 = −σ2 = 51.96 MPa, Image

1.28. σ1 = 46.17 MPa, σ2 = 13.83 MPa, Image

1.30. (a) σx = 100 MPa, τxy = −30 MPa

(b) σ1 = 110 MPa, Image

1.34. P = 1069 kN, p = 467 kPa

1.36. (a)σx = 186 MPa, (b)σ1 = 188 MPa, τmax = 101 MPa, Image

1.39. p = 494 kPa

1.43. σ1 = 66.06 MPa, l1 = 0.956, m1 = 0.169, n1 = 0.242

1.45. σ1 = 24.747 MPa, σ2 = 8.48 MPa, σ3 = 2.773 MPa, l1 = 0.647, m1 = 0.396, n1 = 0.652

1.50. (a) σ1 = 12.049 MPa, σ2 = −1.521 MPa, σ3 = −4.528 MPa, l1 = 0.618, m1 = 0.534, n1 = 0.577

1.54. σ = 52.25 MPa, τ = 36.56 MPa

1.56. (a) τ13 = 8.288 MPa, τ12 = 6.785 MPa, τ23 = 1.503 MPa

1.60. σoct = 12 MPa, τoct = 9.31 MPa

1.62. (a) σ1 = 108.3 MPa, σ2 = 51.7 MPa, σ3 = −50 MPa, Image

(b) σG = 56 MPa, τG = 38 MPa

1.66. (a) τmax = 21 MPa, (b) σoct = 35 MPa, τoct = 17.15 MPa

1.67. σ = −12.39 MPa, τ = 26.2 MPa, px = 16.81 MPa, py = −3.88 MPa, pz = −23.30 MPa

Chapter 2 Stress and Stress–Strain Relations

2.4. c0 = 2a0, c1 = 2(a1 + b0)

2.6. (a) εx = 667 µ, εy = 750 µ, γxy = −1250µ

(b) ε1 = 1335 µ, ε2 = 82 µ Image

2.8. ε1 = 758 µ, ε2 = −808 µ Image

2.10. ΔOB = 0.008 mm, ΔAC = 0.016 mm

2.12. (a) γmax = 200µ, θs = 45°

(b) εx = 350 µ, εy = 250 µ, γxy = –173 µ

2.14. ε1 = −59 µ, ε2 = −1141 µ, Image

2.18. (a) J1 = −3 × 10−4, J2 = −44 × 10−8, J3 = 58 × 10−12

(b) εx′ = 385 µ

(c) ε1 = 598 µ, ε2 = −126 µ, ε3 = −772 µ

(d) γmax = 1370µ

2.23. ΔBD = 0.283/E m

2.26. εx = 522µ, εy = 678 µ, γxy = −1873 µ

2.28. σx = 72 MPa, σy = 88 MPa, σz = 40 MPa, τxy = 16 MPa, τyz = 64 MPa, τxz = 0

2.33. (b)ΔV = −2250 mm3

2.35. σ321 = 1:1.086:1.171, σ1 = 139.947 MPa, σ2 = 129.757 MPa, σ3 = 119.513 MPa

2.39. εx = γ(a − x)/E, εy = −νεx, σx = γ(a − x), γxy = τxy = σy = 0. Yes.

2.42. U1 = P2L/2EA, U2 = 5U1/8, U3 = 5U1/12

2.48. (a) U = 60.981T2ad4G, (b) U = 2.831 kN · m

2.54. U = 3.258 kPa, Uod = 38.01 kpa

2.56. Image

Chapter 3 Two-Dimensional Problems in Elasticity

3.1. (b) Image

3.2. Image

3.14. All conditions, except on edge x = L, are satisfied.

3.16. Image

3.19. Yes, ε1 = 32.8µ, Image

3.20. σx = σy = EαT1/(ν − 1), εz = 2ναT1/(1 − ν) + αT1

3.24. Px = −161.3 kN

3.31. (a) (σx)elast. = P/0.512L, (σx)elem. = P/0.536L

(b) (σx)elast. = P/1.48L, (σx)elem. = P/3.464L

3.33. (a) (σ)elast. = 19.43F/L, (σx)elem. = 20.89F/L

xy)elast. = 5.21F/L, (τxy)elem. = 2.8F/L

3.37. k = 3

3.42. (a) σ1 = 4.29 MPa, (b) τmax = 2.69 MPa,

(c) σoct = 1.07 MPa, τoct = 2.32 MPa

3.44. (a) σc = 1240 MPa, (b) σc = 1959 MPa

3.46. σc = 418 MPa, b = 0.038 mm

3.48. a = 2.994 mm, b = 1.605 mm, σc = 505.2 MPa

3.50. σc = 1014.7 MPa

Chapter 4 Failure Criteria

4.3. (a) σyp = 152.6 MPa, (b) σyp = 134.9 MPa

4.5. t = 8.45 mm

4.6. (a) d = 27.95 mm, (b) d = 36.8 mm

4.8. (a) T = 31.74 kN · m, (b) T = 26.05 kN · m

4.11. (a) R = 932 N, (b) R = 959 N

4.13. (a) p = 6.466 MPa, (b) p = 5.6 MPa

4.17. (b) σ1 = 75 MPa, σ2 = − 300 MPa

4.20. (a) τ = σu/2, (b) Image

4.25. t = 9.27 mm

4.28. p = 11.11 MPa

4.31. t = 0.973 mm

4.35. Pmax = 18.7 kN

4.38. τmax = 274.3 MPa, ϕmax = 4.76°

Chapter 5 Bending of Beams

5.4. Mo = 266.8 N · m

5.6. (a) P = 3.6 kN, (b) P = 3.36 kN

5.9. (a) ϕ = −12.17°, (b) σA = 136.5 MPa

5.10. (b) σx = px3/Lth2, (c) (σx)elast. = 0.998(σx)elem.

5.13. p = 3.88 kN/m

5.14. P = 9320 N

5.15. P = 15.6 kN

5.19. e = 4R

5.23. R = −13pL/32

5.25. υ = Mox2(xL)/4EIL, RB = 3Mo/2L

5.32. (a) P = 11.436 kN, (b) (σθ)B = −86.3 MPa

5.34. P = 1517 N

5.38. (a) σθ = −152.87P, (b) δp = 215.65P/E m

Chapter 6 Torsion of Bars

6.1. (a) τe > τc; (b) Te > Tc

6.3. T = 256.5 kN · m

6.5. k = Gθ/2a2(b − 1)

6.8. θA = aT/2r4G, θB = 2θA

6.10. Image

6.13. τmax = 76.8 MPa, θ = 0.192 rad/m

6.19. (a) C = 2.1 × 10−7G, τmax = 112,860T

6.20. θ = 0.1617 rad/m

6.22. θ = 2T/9Ga3t

6.24. τmax = 5.279 MPa, θ = 0.0131 rad/m

6.26. τ2 = τ4 = τmax = 50.88 MPa, θ = 0.01914 rad/m

Chapter 7 Numerical Methods

7.3. τB = 0.0107

7.6. υ(L) = 7PL3/32EI

7.10. υmax = 0.01852pL3/EI

7.12. υB = −Pa3/16EI, θA = − Pa2/16EI

7.14. υmax = 1.68182Ph4/EI, θmax = −0.02131pL3/EI

7.15. RA = RB = P/2, M = PL/8

7.19.x, σy, τxy}a = {66.46,6.65, –92.12} MPa

Chapter 8 Axisymmetrically Loaded Members

8.2. pi = 51.2 MPa

8.3. (a)Image, (b) rx = 27.12 mm

8.5. (a) pi = 1.6po, (b) pi = 1.16po

8.7. t = 0.59 m

8.11. (a) t = 0.825di, (b) Δd = 0.0074 mm

8.13. (a)Image, (b)Image

8.16. T = 5.073 kN · m

8.21. Δds = 0.23δ0 m

8.23. σθ,max = 1.95EbEs(T2T1)/(Es + 3Eb)105

8.24. T = 101.79 N · m

8.26. ω = 36,726 rpm

8.30. (a) σθ,max = 108.68 MPa, (b) ω = 4300 rpm

8.34. (a) σθ,max = 554.6 MPa,

Chapter 9 Beams on Elastic Foundations

9.1. P = 51.18 kN

9.3. Image

9.5. υmax = 3.375 mm σmax = 103.02 MPa

9.8. Image

9.11. υ = – MLf2(βx)/2β2 EI

9.13. (a) υ = 10 mm; (b) υL = 15 mm, υR = 5 mm

9.14. υC = 0.186 mm

9.15. υC = 2.81 × 10−8 m, θE = 5 × 10−7 rad

Chapter 10 Energy Methods

10.3. υp = (11Pc1a4/12E) + (7Pc2a3/3E) + (Pa3/3EI2)

10.6. δA = 3PL3/16EI, θA = 5PL2/16EI

10.9. δD = Fab2/8EI

10.11. Image

10.16. RA = 4poL/10, MA = poL2/15, RB = poL/10

10.18. R = 3(λ + 1)pL1/2 (3λ + 4), RAh = λpL21/4(3λ + 4)L2, λ = E2I2L1/E1I1L2

10.21. δE = 41.5(P/AK)3

10.26. NA = P/2π, MA = PR/4

10.32. υ = Px2(3Lx)/6EI

10.33. υ = Pc2(L − c)2/4EIL

Chapter 11 Elastic Stability

11.2. (a) 6.25%, (b) Pall = 17.99 kN

11.5. (a) σcr = 34 MPa, (b) σall = 35.25 MPa

11.7. Le = L

11.9. (a) ΔT = δ/2αL, (b) ΔT = (δ/2αL) + (π2I/4L2 Aα)

11.11. Bar BC fails as a column; Pcr = 1297 N

11.13. σcr = 59.46 MPa

11.17. (a) σmax = 93.71 MPa, υmax = 150.6 mm

11.19. P = 0.89π2EI/L2

11.21. Pcr = 12EI/L2

11.23. Pcr = 9EI1/4L2

11.24. Image

11.29. Pcr = 16EI1/L2

Chapter 12 Plastic Behavior of Materials

12.2. α = 42.68°

12.5. σmax = 3Mh/4I

12.8. M = 11ah2σyp/54

12.11. P = 46.18 kN

12.14. Pu = 9Mu/2L

12.17. (a) Mu = 2Myp, (b) Mu = 16b(b3a3)Myp/3π(b4a4)

12.22. to = 6.3 mm

12.27. (a) Pu = 25.53 MPa, (b) pu = 29.48 MPa

Chapter 13 Plates and Shells

13.2. εmax = 1250 µ, σmax = 274.7 MPa

13.4. (b) w = Ma(x2y2)/2D(1 − υ)

13.6. (b) po = 12.05 kPa

13.8. w = Mo (a2r2)/2D(1 + ν), σr,max = σθ,max = 6Mo/t2

13.10. n = 3.33

13.11. Image

13.15. σmax = 2.48 MPa

13.16. Image

13.17. t = 0.791 mm

13.20. Image

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset