References

  1. 1 Marconi, G. (1897). Improvements in transmitting electrical impulses and signals, and in apparatus therefor. British Patent No. 12039. Date of application, 2 June 1896; Complete specification, 2 March 1897.
  2. 2 Barrett, R. (1997). Popov versus Marconi: the century of radio. GEC Review 12 (2): 107–116.
  3. 3 Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal 27: 379–423 and 623–656.
  4. 4 Tse, D. and Viswanath, P. (2005). Fundamentals of Wireless Communication. Cambridge University Press.
  5. 5 Billström, O., Cederquist, L., Ewerbring, M. et al.(2006). Fifty years with mobile phones – from novelty to no. 1 consumer product. Ericsson Review (3): 101–106.
  6. 6 Padgett, J.E., Gunther, C.G., and Hattori, T. (1995). Overview of wireless personal communications. IEEE Communications Magazine 33 (1): 28–41. doi: 10.1109/35.339877.
  7. 7 Erdman, W. (1993). Wireless communications: a decade of progress. IEEE Communications Magazine 31 (12): 48–51. doi: 10.1109/35.247957.
  8. 8 Steele, R. and Hanzo, L. (1999). Mobile Radio Communications: Second and Third Generation Cellular and WATM Systems. 2e. IEEE Press ‐ Wiley.
  9. 9 Sarkar, T.K., Mailloux, R.J., Oliner, A.A. et al. (2006). History of Wireless. Wiley and Hoboken, NJ.
  10. 10 Halonen, T., Romero, J., and Melero, J. (2003). GSM, GPRS and EDGE Performance, 2e. Wiley.
  11. 11 Cox, D. (1995). Wireless personal communications: what is it? IEEE Personal Communications 2 (2): 20–35.
  12. 12 Rizzo, J. and Sollenberger, N. (1995). Multitier wireless access. IEEE Personal Communications 2 (3): 18–30.
  13. 13 ITU‐R (2003). Framework and Overall Objectives of the Future Development of IMT‐2000 and Systems Beyond IMT‐2000. Tech. Rep. ITU‐R M.1645. ITU.
  14. 14 Schulze, H. and Lüders, C. (2005). Theory and Applications of OFDM and CDMA. Wiley.
  15. 15 Viterbi, A.J. and Padovani, R. (1992). Implications of mobile cellular CDMA. IEEE Communications Magazine 30 (12): 38–41. doi: 10.1109/35.210354.
  16. 16 Correia, L. (2006). Mobile Broadband Multimedia Networks: Techniques, Models and Tools for 4G. Elsevier Ltd.
  17. 17 Agilent Technologies (2009). LTE and the Evolution to 4G Wireless: Design and Measurement Challenges. Agilent Technologies.
  18. 18 ITU‐R (2008). Requirements Related to Technical Performance for IMT‐Advanced Radio Interface(s). Tech. Rep. ITU‐R M.2134. ITU.
  19. 19 CISCO (2016). Cisco visual networking index: global mobile data traffic forecast update, 2015–2020, White paper, CISCO.
  20. 20 ITU‐R (2015). Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond. Tech. Rep. ITU‐R M.2083. ITU.
  21. 21 ITU‐R (2014). Future Technology Trends of Terrestrial IMT Systems. Tech. Rep. ITU‐R M.2320. ITU.
  22. 22 Winters, J.H. (1984). Optimum combining in digital mobile radio with cochannel interference. IEEE Transactions on Vehicular Technology 33 (3): 144–155. doi: 10.1109/T‐VT.1984.24001.
  23. 23 Salz, J. (1985). Digital transmission over cross‐coupled linear channels. AT & T Technical Journal 64: 1147–1159.
  24. 24 Alamouti, S.M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications 16 (8): 1451–1458. doi: 10.1109/49.730453.
  25. 25 Telatar, E. (1999). Capacity of multi‐antenna Gaussian channels. European Transactions on Telecommunications 10 (6): 585–595.
  26. 26 Foschini, G.J. and Gans, M.J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 1.6, 311–335.
  27. 27 Foschini, G.J. (1996). Layered space‐time architecture for wireless communication in a fading environment when using multi‐element antennas. Bell Labs Technical Journal 1 (2): 41–59.
  28. 28 Zhang, Y.J. and Letaief, K. (2005). Adaptive resource allocation for multiaccess MIMO/OFDM systems with matched filtering. IEEE Transactions on Communications 53 (11): 1810–1816.
  29. 29 Winters, J. (1987). On the capacity of radio communication systems with diversity in a Rayleigh fading environment. IEEE Journal on Selected Areas in Communication 5 (5): 871–878.
  30. 30 Wittneben, A. (1991). Basestation modulation diversity for digital SIMULCAST. IEEE 41st Vehicular Technology Conference, 1991. ‘Gateway to the Future Technology in Motion’, pp. 848–853.
  31. 31 Winters, J. (1998). The diversity gain of transmit diversity in wireless systems with Rayleigh fading. IEEE Transactions on Vehicular Technology 47 (1): 119–123.
  32. 32 Tarokh, V., Seshadri, N., and Calderbank, A. (1998). Space‐time codes for high data rate wireless communication: performance criterion and code construction. IEEE Transactions on Information Theory 44 (2): 744–765.
  33. 33 Goldsmith, A., Jafar, S., Jindal, N., and Vishwanath, S. (2003). Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communication 21 (5): 684–702.
  34. 34 Damen, M., Abdi, A., and Kaveh, M. (2001). On the effect of correlated fading on several space‐time coding and detection schemes. Proceedings of the 2001 IEEE 54th Vehicular Technology Conference, vol. 1, Atlantic City, NJ, pp. 13–16.
  35. 35 Haas, H., Costa, E., and Schulz, E. (2002). Increasing spectral efficiency by data multiplexing using antenna arrays. Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), vol. 2, pp. 610–613.
  36. 36 Mesleh, R., Haas, H., Ahn, C.W., and Yun, S. (2006). Spatial modulation – a new low complexity spectral efficiency enhancing technique. IEEE International Conference on Communication and Networking in China (CHINACOM), Beijing, China, pp. 1–5.
  37. 37 Mesleh, R., Haas, H., Sinanović, S. et al. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology 57 (4): 2228–2241.
  38. 38 Younis, A., Sinanovic, S., Di Renzo, M. et al. (2013). Generalised sphere decoding for spatial modulation. IEEE Transactions on Communications 61 (7): 2805–2815. doi: 10.1109/TCOMM.2013.061013.120547.
  39. 39 Serafimovski, N., Younis, A., Mesleh, R. et al. (2013). Practical implementation of spatial modulation. IEEE Transactions on Vehicular Technology 62 (9): 4511–4523. doi: 10.1109/TVT.2013.2266619.
  40. 40 Mesleh, R., Hiari, O., Younis, A., and Alouneh, S. (2017). Transmitter design and hardware considerations for different space modulation techniques. IEEE Transactions on Wireless Communications 16 (11): 7512–7522.
  41. 41 Mesleh, R., Haas, H., Lee, Y., and Yun, S. (2005). Interchannel interference avoidance in MIMO transmission by exploiting spatial information. Proceedings of the 16th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), vol. 1, Berlin, Germany, pp. 141–145. doi: 10.1109/PIMRC.2005.1651415.
  42. 42 Mesleh, R., Haas, H., Ahn, C.W., and Yun, S. (2006). Spatial modulation – OFDM. Proceedings of the International OFDM Workshop, Hamburg, Germany.
  43. 43 Mesleh, R., Gansean, S., and Haas, H. (2007). Impact of channel imperfections on spatial modulation OFDM. IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Athens, Greece, pp. 1–5.
  44. 44 Mesleh, R., Engelken, S., Sinanović, S., and Haas, H. (2008). Analytical SER calculation of spatial modulation. IEEE International Symposium on Spread Spectrum Techniques and Applications (ISSSTA), Bologna, Italy.
  45. 45 Younis, A., Thompson, W., Renzo, M.D. et al. (2013). Performance of spatial modulation using measured real‐world channels. Proceedings of the 78th IEEE Vehicular Technology Conference (VTC), Las Vegas, NV.
  46. 46 Younis, A., Basnayaka, D.A., and Haas, H. (2014). Performance analysis for generalised spatial modulation. Proceedings of European Wireless Conference (EW 2014), Barcelona, Spain, pp. 207–212.
  47. 47 Serafimovski, N., Sinanovic, S., Younis, A. et al. (2011). 2‐user multiple access spatial modulation. IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, pp. 343–347. doi: 10.1109/GLOCOMW.2011.6162467.
  48. 48 Younis, A., Mesleh, R., and Haas, H. (2015). Quadrature spatial modulation performance over Nakagami–m fading channels. IEEE Transactions on Vehicular Technology 65 (12): 10227–10231. doi: 10.1109/TVT.2015.2478841.
  49. 49 Thompson, W., Beach, M., McGeehan, J. et al. (2011). Spatial modulation explained and routes for practical evaluation. European Cooperation in the Field of Scientific and Technical Research (COST), Lisbon, Portugal.
  50. 50 Thompson, W., Younis, A., Beach, M. et al. (2012). Initial investigations into the sensitivity of spatial modulation systems on subchannel correlation and power balances. IC 1004 TD(12)03046 Cost Meeting, EURO‐COST, Barcelona, Spain, p. 9 pages.
  51. 51 Mesleh, R. and Younis, A. (2017). Capacity analysis for LOS millimeter–wave quadrature spatial modulation. Wireless Networks. doi: 10.1007/s11276‐017‐1444‐y.
  52. 52 Younis, A., Mesleh, R., Renzo, M.D., and Haas, H. (2014). Generalised spatial modulation for large–scale MIMO. Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), Lisbon, Portugal.
  53. 53 Elkawafi, S., Younis, A., Mesleh, R. et al. (2017). Spatial modulation and spatial multiplexing capacity analysis over 3D mmwave communications. 23th European Wireless Conference European Wireless, Dresden, Germany.
  54. 54 Elkawafi, S., Younis, A., Mesleh, R. et al. (2017). Spatial Modulation and Spatial Multiplexing Performance Comparison over 3D mmWave Communications. International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India.
  55. 55 Younis, A., Abuzgaia, N., Mesleh, R., and Haas, H. (2017). Quadrature spatial modulation for 5G outdoor millimeter–wave communications: capacity analysis. IEEE Transactions on Wireless Communications 16 (5): 2882–2890.
  56. 56 Mesleh, R. and Younis, A. (2016). LOS millimeter‐wave communication with quadrature spatial modulation. IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 109–113. doi: 10.1109/ISSPIT.2016.7886018.
  57. 57 Ganesan, S., Mesleh, R., Haas, H. et al. (2006). On the performance of spatial modulation OFDM. Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, pp. 1825–1829.
  58. 58 Serafimovski, N., Di Renzo, M., Sinanović, S. et al. (2010). Fractional bit encoded spatial modulation (FBE–SM). IEEE Communications Letters 14 (5): 429–431.
  59. 59 Renzo, M.D. and Haas, H. (2010). Performance analysis of Spatial Modulation. International ICST Conference on Communications and Networking in China (CHINACOM), pp. 1–7.
  60. 60 Basar, E. (2016). Index modulation techniques for 5G wireless networks. IEEE Communications Magazine 54 (7): 168–175. doi: 10.1109/MCOM.2016.7509396.
  61. 61 Di Renzo, M., Haas, H., and Grant, P.M. (2011). Spatial modulation for multiple‐antenna wireless systems: a survey. IEEE Communications Magazine 49 (11): 182–191.
  62. 62 Di Renzo, M., Haas, H., Ghrayeb, A. et al. (2014). Spatial modulation for generalized MIMO: challenges, opportunities, and implementation. Proceedings of the IEEE 102 (1): 56–103. doi: 10.1109/JPROC.2013.2287851.
  63. 63 Bian, Y., Cheng, X., Wen, M. et al. (2015). Differential spatial modulation. IEEE Transactions on Vehicular Technology 64 (7): 3262–3268. doi: 10.1109/TVT.2014.2348791.
  64. 64 Datta, T., Eshwaraiah, H.S., and Chockalingam, A. (2016). Generalized space‐and‐frequency index modulation. IEEE Transactions on Vehicular Technology 65 (7): 4911–4924. doi: 10.1109/TVT.2015.2451095.
  65. 65 Mesleh, R., Ikki, S., and Aggoune, H. (2015). Quadrature spatial modulation. IEEE Transactions on Vehicular Technology 64 (6): 2738–2742. doi: 10.1109/TVT.2014.2344036.
  66. 66 Mesleh, R., Elgala, H., and Haas, H. (2011). Optical spatial modulation. IEEE/OSA Journal of Optical Communications and Networking 3 (3): 234–244. doi: 10.1364/JOCN.3.000234.
  67. 67 Younis, A., Serafimovski, N., Mesleh, R., and Haas, H. (2010). Generalised spatial modulation. Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA.
  68. 68 Jeganathan, J., Ghrayeb, A., and Szczecinski, L. (2008). Spatial modulation: optimal detection and performance analysis. IEEE Communications Letters 12 (8): 545–547. doi: 10.1109/LCOMM.2008.080739.
  69. 69 Jeganathan, J., Ghrayeb, A., and Szczecinski, L. (2008). Generalized space shift keying modulation for MIMO channels. Proceedings of the IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications PIMRC 2008, Cannes, France, pp. 1–5. doi: 10.1109/PIMRC.2008.4699782.
  70. 70 Mesleh, R., Ikki, S.S., and Aggoune, H.M. (2017). Quadrature spatial modulation‐performance analysis and impact of imperfect channel knowledge. Transactions on Emerging Telecommunications Technologies 28 (1): e2905. doi: 10.1002/ett.2905.
  71. 71 Mesleh, R. (2007). Spatial modulation: a spatial multiplexing technique for efficient wireless data transmission. PhD thesis. Bremen, Germany: Jacobs University.
  72. 72 Younis, A. (2014). Spatial modulation: theory to practice. PhD thesis. University of Edinburgh.
  73. 73 Badarneh, O.S. and Mesleh, R. (2016). A comprehensive framework for quadrature spatial modulation in generalized fading scenarios. IEEE Transactions on Communications 64 (7): 2961–2970. doi: 10.1109/TCOMM.2016.2571285.
  74. 74 Mesleh, R., Badarneh, O.S., Younis, A., and Almehmadi, F.S. (2016). How significant is the assumption of the uniform channel phase distribution on the performance of spatial multiplexing MIMO system? Wireless Networks 23 (7): 2281–2288. doi: 10.1007/s11276‐016‐1286‐z.
  75. 75 Mesleh, R., Badarneh, O.S., Younis, A., and Haas, H. (2015). Performance analysis of spatial modulation and space‐shift keying with imperfect channel estimation over generalized fading channels. IEEE Transactions on Vehicular Technology 64 (1): 88–96. doi: 10.1109/TVT.2014.2321059.
  76. 76 Maleki, M., Bahrami, H., Beygi, S. et al. (2013). Space modulation with CSI: constellation design and performance evaluation. IEEE Transactions on Vehicular Technology 62 (4): 1623–1634. doi: 10.1109/TVT.2012.2232686.
  77. 77 Mesleh, R., Ikki, S.S., and Almehmadi, F.S. (2016). Impact of IQ imbalance on the performance of QSM multiple‐input‐multiple‐output system. IET Communications 10 (17): 2391–2395. http://digital‐library.theiet.org/content/journals/10.1049/iet‐com.2016.0631, early access.
  78. 78 Sugiura, S., Chen, S., and Hanzo, L. (2011). Generalized space‐time shift keying designed for flexible diversity‐, multiplexing‐ and complexity‐tradeoffs. IEEE Transactions on Wireless Communications 10 (4): 1144–1153. doi: 10.1109/TWC.2011.012411.100065.
  79. 79 Sugiura, S., Chen, S., and Hanzo, L. (2010). A unified MIMO architecture subsuming space shift keying, OSTBC, BLAST and LDC. IEEE Vehicular Technology Conference Fall (VTC 2010‐Fall), pp. 1–5. doi: 10.1109/VETECF.2010.5594145.
  80. 80 Sugiura, S., Chen, S., and Hanzo, L. (2010). Coherent and differential space‐time shift keying: a dispersion matrix approach. IEEE Transactions on Communications 58 (11): 3219–3230. doi: 10.1109/TCOMM.2010.093010.090730.
  81. 81 Wang, J., Jia, S., and Song, J. (2012). Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme. IEEE Transactions on Wireless Communications 11 (4): 1605–1615. doi: 10.1109/TWC.2012.030512.111635.
  82. 82 Yang, P., Xiao, Y., Li, L. et al. (2012). An improved matched‐filter based detection algorithm for space‐time shift keying systems. IEEE Signal Processing Letters 19 (5): 271–274. doi: 10.1109/LSP.2012.2190059.
  83. 83 Yang, Y. and Aissa, S. (2011). Information‐guided transmission in decode‐and‐forward relaying systems: spatial exploitation and throughput enhancement. IEEE Transactions on Wireless Communications 10 (7): 2341–2351. doi: 10.1109/TWC.2011.050511.101094.
  84. 84 Zhang, J., Wang, Y., Ding, L., and Zhang, N. (2014). Bit error probability of spatial modulation over measured indoor channels. IEEE Transactions on Wireless Communications 13 (3): 1380–1387. doi: 10.1109/TWC.2014.012814.130562.
  85. 85 Mesleh, R., Elgala, H., Mehmood, R., and Haas, H. (2011). Performance of optical spatial modulation with transmitters‐receivers alignment. IEEE Communications Letters 15 (1): 79–81. doi: 10.1109/LCOMM.2010.01.101208.
  86. 86 Younis, A., Mesleh, R., Haas, H., and Grant, P.M. (2010). Reduced complexity sphere decoder for spatial modulation detection receivers. 2010 IEEE Global Telecommunications Conference (GLOBECOM), Miami, FL, pp. 1–5. doi: 10.1109/GLOCOM.2010.5683993.
  87. 87 Younis, A., Di Renzo, M., Mesleh, R., and Haas, H. (2011). Sphere decoding for spatial modulation. Proceedings of IEEE International Conference on Communications (ICC), Kyoto, Japan, pp. 1–6. doi: 10.1109/icc.2011.5963484.
  88. 88 Di Renzo, M. and Haas, H. (2013). On transmit diversity for spatial modulation MIMO: impact of spatial constellation diagram and shaping filters at the transmitter. IEEE Transactions on Vehicular Technology 62 (6): 2507–2531. doi: 10.1109/TVT.2013.2244927.
  89. 89 Jeganathan, J., Ghrayeb, A., Szczecinski, L., and Ceron, A. (2009). Space shift keying modulation for MIMO channels. IEEE Transactions on Wireless Communications 8 (7): 3692–3703. doi: 10.1109/TWC.2009.080910.
  90. 90 Sugiura, S., Chen, S., and Hanzo, L. (2010). Space‐time shift keying: a unified MIMO architecture. Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE, pp. 1–5. doi: 10.1109/GLOCOM.2010.5684112.
  91. 91 Sugiura, S., Chen, S., and Hanzo, L. (2012). A universal space‐time architecture for multiple‐antenna aided systems. IEEE Communications Surveys Tutorials 14 (2): 401–420. doi: 10.1109/SURV.2011.041911.00105.
  92. 92 Sugiura, S. (2011). Dispersion matrix optimization for space‐time shift keying. IEEE Communications Letters 15 (11): 1152–1155. doi: 10.1109/LCOMM.2011.100611.111770.
  93. 93 Rajashekar, R., Hari, K., and Hanzo, L. (2013). Structured dispersion matrices from division algebra codes for space‐time shift keying. IEEE Signal Processing Letters 20 (4): 371–374. doi: 10.1109/LSP.2013.2247997.
  94. 94 Başar, E. (2015). Multiple‐input multiple‐output OFDM with index modulation. IEEE Signal Processing Letters 22 (12): 2259–2263. doi: 10.1109/LSP.2015.2475361.
  95. 95 Basar, E., Wen, M., Mesleh, R. et al. (2017). Index modulation techniques for next‐generation wireless networks. IEEE Access 5 (99): 1–52. doi: 10.1109/ACCESS.2017.2737528.
  96. 96 Wen, M., Cheng, X., and Yang, L. (2017). Index Modulation for 5G Wireless Communications. Springer.
  97. 97 Mesleh, R., Althunibat, S., and Younis, A. (2017). Differential quadrature spatial modulation. IEEE Transactions Communications 65 (9): 3810–3817. doi: 10.1109/TCOMM.2017.2712720.
  98. 98 Zhang, M., Wen, M., Cheng, X., and Yang, L.Q. (2015). Differential spatial modulation for dual‐hop amplify‐and‐forward relaying. 2015 IEEE International Conference on Communications (ICC), pp. 1518–1523. doi: 10.1109/ICC.2015.7248539.
  99. 99 Elgala, H., Mesleh, R., Haas, H., and Pricope, B. (2007). OFDM visible light wireless communication based on white LEDs. Proceedings of the 64th IEEE Vehicular Technology Conference (VTC), Dublin, Ireland.
  100. 100 Mesleh, R., Mehmood, R., Elgala, H., and Haas, H. (2010). An overview of indoor OFDM/DMT optical wireless communication systems. IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Newcastle, UK, pp. 1–5, to appear.
  101. 101 Elgala, H., Mesleh, R., and Haas, H. (2011). Indoor optical wireless communication: potential and state‐of‐the‐art. IEEE Communications Magazine 49 (9): 56–62. doi: 10.1109/MCOM.2011.6011734.
  102. 102 Mesleh, R., Helgala, H., and Haas, H. (2012). Performance analysis of indoor OFDM optical wireless communication systems. Proceedings of the Wireless Communications and Networking Conference (WCNC), IEEE, IEEE, Paris, France, to appear.
  103. 103 Mesleh, R., Mehmood, R., Elgala, H., and Haas, H. (2010). Indoor MIMO optical wireless communication using spatial modulation. IEEE International Conference on Communications (ICC), Cape Town, South Africa, pp. 1–5.
  104. 104 Fakidis, J., Tsonev, D., and Haas, H. (2013). A comparison between DCO‐OFDMA and synchronous one‐dimensional OCDMA for optical wireless communications. Proceedings of the IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), London, UK, pp. 3605–3609.
  105. 105 Ijaz, M., Tsonev, D., Stavridis, A. et al. (2014). Optical spatial modulation OFDM using micro LEDs. 48th Asilomar Conference on Signals, Systems and Computers, pp. 1734–1738. doi: 10.1109/ACSSC.2014.7094764.
  106. 106 Abaza, M., Mesleh, R., Mansour, A., and el Hadi Aggoune (2015). Performance analysis of MISO multi‐hop FSO links over log‐normal channels with fog and beam divergence attenuations. Optics Communications 334: 247–252. doi: http://dx.doi.org/10.1016/j.optcom.2014.08.050.
  107. 107 Dimitrov, S. and Haas, H. (2015). Principles of LED Light Communications: Towards Networked Li‐Fi. Cambridge University Press.
  108. 108 Bouchet, O., Sizun, H., Boisrobert, C. et al. (2010). Free‐Space Optics: Propagation and Communication. Wiley‐ISTE.
  109. 109 Uysal, M., Capsoni, C., Ghassemlooy, Z. et al. (2016). Optical Wireless Communications: An Emerging Technology. Springer.
  110. 110 Ghassemlooy, Z., Popoola, W., and Rajbhandari, S. (2017). Optical Wireless Communications: System and Channel Modelling with MATLAB. CRC Press.
  111. 111 Paulraj, A., Nabar, R., and Gore, D. (2003). Introduction to Space‐Time Wireless Communications. Cambridge University Press, UK.
  112. 112 Wolniansky, P., Foschini, G., Golden, G., and Valenzuela, R. (1998). V‐BLAST: An Architecture for Realizing very High Data Rates over the Rich‐Scattering Wireless Channel. Unino Radio‐Scientifique Internationale (URSI) International Symposium on Signals, Systems, and Electronics (ISSSE), pp. 295–300.
  113. 113 Foschini, G., Chizhik, D., Gans, M. et al. (2003). Analysis and performance of some basic space‐time architectures. IEEE Journal on Selected Areas in Communications [Invited Paper] 21 (3): 303–320.
  114. 114 Viterbo, E. and Boutros, J. (1999). A universal lattice code decoder for fading channels. IEEE Transactions on Information Theory 45 (5): 1639–1642.
  115. 115 Damen, M., Abed‐Meraim, K., and Belfiore, J.C. (2000). Generalised sphere decoder for asymmetrical space‐time communication architecture. Electronics Letters 36 (2): 166–167. doi: 10.1049/el:20000168.
  116. 116 Kühn, V. (2006). Wireless Communications over MIMO Channels. Wiley.
  117. 117 Gesbert, D., Shafi, M., shan Shiu, D. et al. (2003). From theory to practice: an overview of MIMO space–time coded wireless systems. IEEE Journal on Selected Areas in Communications 21 (3): 281–302.
  118. 118 Rappaport, T.S. (2002). Wireless Communications: Principles and Practice, 2e. Prentice Hall PTR.
  119. 119 Rappaport, T.S. (2001). Wireless Communications: Principles and Practice, 2e. Prentice Hall. ISBN: 0130422320.
  120. 120 Proakis, J.G. (2000). Digital Communications, 4e. McGraw–Hill, New York.
  121. 121 Jafarkhani, H. (2005). Space‐Time Coding: Theory and Practice. Cambridge University Press.
  122. 122 Rayleigh, L. (1880). On the resultant of a large number of vibrations of the same pitch and of arbitrary phase. Philosophical Magazine 10: 73–78.
  123. 123 Simon, M.K. and Alouini, M. (2005). Digital Communication Over Fading Channels, Wiley Series in Telecommunications and Signal Processing, 2e. Wiley. ISBN: 978‐0‐471‐64953‐3.
  124. 124 Rice, S.O. (1944). Mathematical analysis of random noise. Bell System Technical 23: 282–332. http://adsabs.harvard.edu/cgi‐bin/nph‐bib_query?bibcode=1944BSTJ¨.23¨282R.
  125. 125 Godavarti, M., Hero, A., and Marzetta, T. (2001). Min‐capacity of a multiple‐antenna wireless channel in a static rician fading environment. Proceedings of the IEEE International Symposium on Information Theory ISIT' 2001, p. 57.
  126. 126 Nakagami, M. (1960). The m‐distribution – a general formula of intensity distribution of rapid fading. In: Statistical Methods in Radio Wave Propagation (ed. W.C. Hoffmann), 3–6, 6a, 7–36. Elmsford, NY: Pergamon Press.
  127. 127 Yacoub, M., Fraidenraich, G., and Santos Filho, J. (2005). Nakagami‐m phase‐envelope joint distribution. Electronics Letters 41 (5): 259–261. doi: 10.1049/el:20057014.
  128. 128 Yacoub, M. (2010). Nakagami‐m phase‐envelope joint distribution: a new model. IEEE Transactions on Vehicular Technology 59 (3): 1552–1557. doi: 10.1109/TVT.2010.2040641.
  129. 129 da Costa, D.B. and Yacoub, M.D. (2007). The joint phase‐envelope distribution. IEEE Antennas and Wireless Propagation Letters 6: 195–198.
  130. 130 Dias, U.S., Yacoub, M.D., and da Costa, D.B. (2008). The phase‐envelope joint distribution. Proceedings of IEEE PIMRC, pp. 1–5.
  131. 131 Yacoub, M.D. (2007). The distribution and the distribution. IEEE Antennas and Propagation Magazine 49 (1): 68–81.
  132. 132 Abramowitz, M. and Stegun, I.A. (1972). Handbook of Mathematical Functions with Fomulas, Graphs, and Mathematical Tables, 9e. Dover Publications.
  133. 133 Papazafeiropoulos, A.K. and Kotsopoulos, S.A. (2009). The joint envelope‐phase fading distribution. Proceedings ot the IEEE PIMRC, pp. 919–922.
  134. 134 Yacoub, M.D. (2002). The distribution: a general fading distribution. Proceedings of the IEEE PIMRC, pp. 629.
  135. 135 Paulraj, A.J. and Papadias, C.B. (1997). Space‐time processing for wireless communications. IEEE Signal Processing Magazine 14 (6): 49–83. doi: 10.1109/79.637317.
  136. 136 Hottinen, A., Tirkkonen, O., and Wichman, R. (2003). Multi‐Antenna Tansceiver Techniques for 3G and Beyond. Wiley.
  137. 137 Forenza, A., Love, D., and Heath, R. Jr. (2004). A low complexity algorithm to simulate the spatial covariance matrix for clustered MIMO channel models. IEEE Vehicular Technology Conference (VTC Fall 2004), vol. 2, Los Angeles, CA, USA, pp. 889–893.
  138. 138 G. T. S. Group (2003). Spatial Channel Model, Spatial Channel Model AHG (Combined ad‐hoc from 3GPP and 3GPP2).
  139. 139 Saleh, A. and Valenzuela, R. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications 5 (2): 128–137.
  140. 140 Spencer, Q., Jeffs, B., Jensen, M., and Swindlehurst, A. (2000). Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel. IEEE Journal on Selected Areas in Communications 18 (3): 347–360.
  141. 141 Erceg, V. et al. (2004). Retrieved January 12, 2007 from, TGn Channel Models, IEEE P802.11 Wireless LANs http://www.nari.ee.ethz.ch/dsbaum/11‐03‐0940‐04‐000n‐tgn‐channel‐models.pdf (accessed 20 December 2017).
  142. 142 Lee, W.Y. (1973). Effects on correlation between two mobile radio base‐station antennas. IEEE Transactions on Vehicular Technology 22 (4): 130–140.
  143. 143 Adachi, F., Feeney, M.T., Parsons, J.D., and Williamson, A.G. (1986). Crosscorrelation between the envelopes of 900 mhz signals received at a mobile radio base station site. IEE Proceedings F Communications, Radar and Signal Processing 133 (6): 506–512. doi: 10.1049/ip‐f‐1.1986.0083.
  144. 144 Salz, J. and Winters, J. (1994). Effect of fading correlation on adaptive arrays in digital mobile radio. IEEE Transactions on Vehicular Technology 43 (4): 1049–1057.
  145. 145 Pedersen, K., Mogensen, P., and Fleury, B. (1998). Spatial channel characteristics in outdoor environments and their impact on BS antenna system performance. Proceedings of the 1998 48th IEEE Vehicular Technology Conference, vol. 2, pp. 719–723.
  146. 146 Hsu, H. (1995). Signals and Systems, Schaum's Outline Series. McGraw‐Hill.
  147. 147 Shin, H. and Lee, J.H. (2003). Capacity of multiple‐antenna fading channels: spatial fading correlation, double scattering, and keyhole. IEEE Transactions on Information Theory 49 (10): 2636–2647.
  148. 148 Svantesson, T. and Ranheim, A. (2001). Mutual coupling effects on the capacity of multielement antenna systems. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '01), vol. 4, Salt Lake City, UT, USA, pp. 2485–2488.
  149. 149 Gupta, I. and Ksienski, A. (1983). Effect of mutual coupling on the performance of adaptive arrays. IEEE Transactions on Antennas and Propagation 31 (5): 785–791.
  150. 150 Janaswamy, R. (2002). Effect of element mutual coupling on the capacity of fixed length linear arrays. IEEE Antennas and Wireless Propagation Letters 1: 157–160.
  151. 151 Cho, Y.S., Kim, J., Yang, W.Y., and Kang, C.G. (2010). Channel estimation. In: MIMO‐OFDM Wireless Communications with MATLAB. Wiley‐IEEE Press, pp. 187–207. doi: 10.1002/9780470825631.ch6.
  152. 152 Yoo, T. and Goldsmith, A. (2004). Capacity of fading MIMO channels with channel estimation error. 2004 IEEE International Conference on Communications, vol. 2, pp. 808–813. doi: 10.1109/ICC.2004.1312613.
  153. 153 Mesleh, R., Althunibat, S., and Younis, A. (2017). Differential quadrature spatial modulation. IEEE Transactions on Communications 65 (9): 3810–3817. doi: 10.1109/TCOMM.2017.2712720.
  154. 154 Mesleh, R., Di Renzo, M., Haas, H., and Grant, P.M. (2010). Trellis coded spatial modulation. IEEE Transactions on Wireless Communications 9 (7): 2349–2361. doi: 10.1109/TWC.2010.07.091526.
  155. 155 Fague, D.E. (2016). New RF DAC Broadens Software‐Defined Radio Horizon. Tech. Rep. 50. Analog Dialouge. http://www.analog.com/en/analog‐dialogue/articles/new‐rf‐dac‐broadens‐sdr‐horizon.html (accessed 20 December 2017).
  156. 156 Soujeri, E. and Kaddoum, G. (2016). The impact of antenna switching time on spatial modulation. IEEE Wireless Communications Letters 5 (3): 256–259. doi: 10.1109/LWC.2016.2535318.
  157. 157 Agilent Technologies Understanding RF/Microwave Solid State Switches and their Applications. Tech. Rep. http://cp.literature.agilent.com/litweb/pdf/5989‐7618EN.pdf (retreived online on 25 October 2016).
  158. 158 Skyworks Solutions, Inc. General purpose RF switches. http://www.skyworksinc.com/uploads/documents/PB‐RFSwitches‐PB121‐15B.pdf (retrived online on 25 October 2016).
  159. 159 Chau, Y.A. and Yu, S.H. (2001). Space modulation on wireless fading channels. IEEE Vehicular Technology Conference (VTC Fall 2001), vol. 3, pp. 1668–1671. doi: 10.1109/VTC.2001.956483.
  160. 160 Xu, C., Sugiura, S., Ng, S.X., and Hanzo, L. (2013). Spatial modulation and space‐time shift keying: optimal performance at a reduced detection complexity. IEEE Transactions on Communications 61 (1): 206–216. doi: 10.1109/TCOMM.2012.100312.120251.
  161. 161 Basşar, E., Aygölü, U., Panayirci, E., and Poor, H. (2010). Space‐time block coding for spatial modulation. IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 803–808. doi: 10.1109/PIMRC.2010.5671984.
  162. 162 Basar, E., Aygolu, U., Panayirci, E., and Poor, H.V. (2012). Super‐orthogonal trellis‐coded spatial modulation. IET Communications 6 (17): 2922–2932. doi: 10.1049/iet‐com.2012.0355.
  163. 163 Hanzo, L., Liew, T., and Yeap, B. (2002). Turbo Coding, Turbo Equalisation and Space‐Time Coding for Transmission over Fading Channels. Wiley.
  164. 164 Hassibi, B. and Hochwald, B. (2002). High‐rate codes that are linear in space and time. IEEE Transactions on Information Theory 48 (7): 1804–1824. doi: 10.1109/TIT.2002.1013127.
  165. 165 Le, M.T., Ngo, V.D., Mai, H.A. et al. (2014). Spatially modulated orthogonal space‐time block codes with non‐vanishing determinants. IEEE Transactions on Communications 62 (1): 85–99. doi: 10.1109/TCOMM.2013.112913.130219.
  166. 166 Kohno, R. (1998). Spatial and temporal communication theory using adaptive antenna array. IEEE Personal Communications [see also IEEE Wireless Communications] 5 (1): 28–35. doi: 10.1109/98.656157.
  167. 167 Jafarkhani, H. (2001). A quasi‐orthogonal space‐time block code. IEEE Transactions on Communications 49 (1): 1–4. doi: 10.1109/26.898239.
  168. 168 Sugiura, S. and Hanzo, L. (2013). On the joint optimization of dispersion matrices and constellations for near‐capacity irregular precoded space‐time shift keying. IEEE Transactions on Wireless Communications 12 (1): 380–387. doi: 10.1109/TWC.2012.120412.120718.
  169. 169 Pless, V. (1997). Introduction to the Theory of Error‐Correcting Codes, 3e. Wiley. ISBN: 978‐0‐471‐19047‐9.
  170. 170 Di Renzo, M., Mesleh, R., Haas, H., and Grant, P. (2010). Upper bounds for the analysis of trellis coded spatial modulation over correlated fading channels. IEEE 71st Vehicular Technology Conference (VTC 2010‐Spring), pp. 1–5. doi: 10.1109/VETECS.2010.5493766.
  171. 171 Basar, E., Aygolu, U., Panayirci, E., and Poor, H.V. (2011). New trellis code design for spatial modulation. IEEE Transactions on Wireless Communications 10: 2670–2680. doi: 10.1109/TWC.2011.061511.101745.
  172. 172 Vladeanu, C. (2012). Turbo trellis‐coded spatial modulation. 2012 IEEE on Global Communications Conference (GLOBECOM), pp. 4024–4029. doi: 10.1109/GLOCOM.2012.6503746.
  173. 173 Ungerboeck, G. (1982). Channel coding with multilevel/phase signals. IEEE Journal on Information Technology 28 (1): 55–67.
  174. 174 Forney, G.D. and Ungerboeck, G. (1998). Modulation and coding for linear Gaussian channels. IEEE Transactions on Information Theory 44 (6): 2384–2415.
  175. 175 Golub, G.H. and van Loan, C.F. (1996). Matrix Computations. The John Hopkins University Press.
  176. 176 Kailath, T., Vikalo, H., and Hassibi, B. (2006). Space‐Time Wireless Systems: From Array Processing to MIMO Communications. Cambridge University Press.
  177. 177 Hassibi, B. and Vikalo, H. (2005). On the sphere‐decoding algorithm I. Expected complexity. IEEE Transactions on Signal Processing 53 (8): 2806–2818. doi: 10.1109/TSP.2005.850352.
  178. 178 Cui, T. and Tellambura, C. (2005). An efficient generalized sphere decoder for rank‐deficient MIMO systems. IEEE Communications Letters 9 (5): 423–425. doi: 10.1109/LCOMM.2005.1431159.
  179. 179 Wang, P. and Le‐Ngoc, T. (2009). A low‐complexity generalized sphere decoding approach for underdetermined linear communication systems: performance and complexity evaluation. IEEE Transactions on Communications 57 (11): 3376–3388. doi: 10.1109/TCOMM.2009.11.060557.
  180. 180 Jalden, J., Barbero, L., Ottersten, B., and Thompson, J. (2009). The error probability of the fixed‐complexity sphere decoder. IEEE Transactions on Signal Processing 57 (7): 2711–2720. doi: 10.1109/TSP.2009.2017574.
  181. 181 Xia, X., Hu, H., and Wang, H. (2007). Reduced initial searching radius for sphere decoder. Proceedings of the IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Athens, Greece, pp. 1–4. doi: 10.1109/PIMRC.2007.4394469.
  182. 182 Auer, G., Giannini, V., Desset, C. et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications 18 (5): 40–49. doi: 10.1109/MWC.2011.6056691.
  183. 183 Ge, X., Cheng, H., Guizani, M., and Han, T. (2014). 5g wireless backhaul networks: challenges and research advances. IEEE Network 28 (6): 6–11. doi: 10.1109/MNET.2014.6963798.
  184. 184 Minicircuits (2017). SW SPDT. https://www.minicircuits.com/WebStore/dashboard.html?model=HSWA2‐30DR%2B (accessed 20 December 2017).
  185. 185 Digikey (2017). RF transciver ICS. http://www.digikey.com/product‐detail/en/analog‐devices‐inc/AD9364BBCZ/AD9364BBCZ‐ND/4747823 (accessed 20 December 2017).
  186. 186 Microship (2017). 16‐bit microcontrollers. http://eu.mouser.com/ProductDetail/Microchip‐Technology/PIC24FJ64GB406‐I‐PT/?qs=w3MdF6xSSP5O%2Fs8hl8VR2A%3D%3D (accessed 20 December 2017).
  187. 187 Mouser (2017). Serial to parallel logic converters. http://eu.mouser.com/ProductDetail/Texas‐Instruments/SN74LV8153PWR (accessed 20 December 2017).
  188. 188 Mesleh, R. and Ikki, S. (2012). On the effect of Gaussian imperfect channel estimations on the performance of space modulation techniques. IEEE 75th Vehicular Technology Conference (VTC Spring), pp. 1–5. doi: 10.1109/VETECS.2012.6239909.
  189. 189 Badarneh, O.S. and Mesleh, R. (2015). Performance analysis of space modulation techniques over and fading channels with imperfect channel estimation. Transactions on Emerging Telecommunications Technologies 28 (2): e2940. doi: 10.1002/ett.2940.
  190. 190 Alouini, M.S. and Goldsmith, A. (1999). A unified approach for calculating error rates of linearly modulated signals over generalized fading channels. IEEE Transactions on Communications 47 (9): 1324–1334.
  191. 191 Gradshteyn, I.S. and Ryzhik, I.M. (2007). Table of Integrals, Series, and Products, 7e. Academic Press. ISBN‐10: 0123736374.
  192. 192 Wu, J. and Xiao, C. (2008). Optimal diversity combining based on linear estimation of rician fading channels. IEEE Transactions on Communications 56 (10): 1612–1615. doi: 10.1109/TCOMM.2008.060598.
  193. 193 Koca, M. and Sari, H. (2011). A general framework for performance analysis of spatial modulation over correlated fading channels. CoRR, abs/1109.5589.
  194. 194 Alshamali, A. and Quza, B. (2009). Performance of spatial modulation in correlated and uncorrelated Nakagami fading channel. Journal of Communications 4 (3): 170–174.
  195. 195 Di Renzo, M. and Haas, H. (2011). Bit error probability of space modulation over Nakagami‐m fading: asymptotic analysis. IEEE Communications Letters 15 (10): 1026–1028. doi: 10.1109/LCOMM.2011.080811.110873.
  196. 196 Di Renzo, M. and Haas, H. (2012). Bit error probability of spatial modulation (SM) MIMO over generalized fading channels. IEEE Transactions on Vehicular Technology 61 (3): 1124–1144. doi: 10.1109/TVT.2012.2186158.
  197. 197 Di Renzo, M. and Haas, H. (2011). Bit error probability of space‐shift keying MIMO over multiple‐access independent fading channels. IEEE Transactions on Vehicular Technology 60 (8): 3694–3711. doi: 10.1109/TVT.2011.2167636.
  198. 198 Simon, M.K. and Alouini, M.S. (2000). Digital Communication over Fading Channels: A Unified Approach to Performance Analysis, 1e. Wiley.
  199. 199 Hedayat, A., Shah, H., and Nosratinia, A. (2005). Analysis of space‐time coding in correlated fading channels. IEEE Transactions on Wireless Communications 4 (6): 2882–2891. doi: 10.1109/TWC.2005.858338.
  200. 200 Turin, G.L. (1960). The characteristic function of Hermitian quadratic forms in complex normal variables. Biometrika 47 (1/2): 199–201.
  201. 201 Alhassi, A., Abdelgader, A., Elsahli, H., and Mesleh, R. (2017). Performance of spatial multiplexing in the presence of channel estimation errors. Almadar Journal for Communications, Information Technology, and Applicatoins 4 (1): 15–19.
  202. 202 Yonghong, H., Pichao, W., Xiang, W. et al. (2013). Ergodic capacity analysis of spatially modulated systems. China Communications 10 (7): 118–125. doi: 10.1109/CC.2013.6571295.
  203. 203 Rajashekar, R., Hari, K., and Hanzo, L. (2014). Reduced‐complexity ML detection and capacity‐optimized training for spatial modulation systems. IEEE Transactions on Communications 62 (1): 112–125. doi: 10.1109/TCOMM.2013.120213.120850.
  204. 204 An, Z., Wang, J., Wang, J. et al. (2015). Mutual information analysis on spatial modulation multiple antenna system. IEEE Transactions on Communications 63 (3): 826–843. doi: 10.1109/TCOMM.2014.2387171.
  205. 205 Yang, Y. and Jiao, B. (2008). Information‐guided channel‐hopping for high data rate wireless communication. IEEE Communications Letters 12 (4): 225–227. doi: 10.1109/LCOMM.2008.071986.
  206. 206 Yang, P., Renzo, M.D., Xiao, Y. et al. (2015). Design guidelines for spatial modulation. IEEE Communications Surveys Tutorials 17 (1): 6–26. doi: 10.1109/COMST.2014.2327066.
  207. 207 Assaad, M. and Zeghlache, D. (2003). On the capacity of HSDPA. Global Telecommunications Conference, 2003. GLOBECOM '03. IEEE, vol. 1, pp. 60–64. doi: 10.1109/GLOCOM.2003.1258203.
  208. 208 Chung, S.T., Lozano, A., and Huang, H. (2001). Approaching eigenmode BLAST channel capacity using V‐BLAST with rate and power feedback. Proceedings of the 54th Vehicular Technology Conference (VTC 01), vol. 2, Atlantic City, NJ, USA, pp. 915–919. doi: 10.1109/VTC.2001.956906.
  209. 209 Jayaweera, S. (2007). V‐BLAST‐based virtual MIMO for distributed wireless sensor networks. IEEE Transactions on Communications 55 (10): 1867–1872. doi: 10.1109/TCOMM.2007.906389.
  210. 210 Liu, P., Renzo, M.D., and Springer, A. (2016). Line‐of‐sight spatial modulation for indoor mmWave communication at 60 GHz. IEEE Transactions on Wireless Communications 15 (11): 7373–7389. doi: 10.1109/TWC.2016.2601616.
  211. 211 Fano, R.M. (1961). Transmission of Information: A statistical Theory of Communications. New York: Wiley.
  212. 212 Yang, Y. and Jiao, B. (2008). On the capacity of information‐guided channel‐hopping in multi‐antenna system. IEEE INFOCOM Workshops 2008, pp. 1–5. doi: 10.1109/INFOCOM.2008.4544653.
  213. 213 Basnayaka, D.A., Renzo, M.D., and Haas, H. (2016). Massive but few active MIMO. IEEE Transactions on Communications 65 (9): 6861–6877.
  214. 214 Grimmett, G.R. and Stirzaker, D.R. (2001). Probability and Random Processes, 3e. Oxford University Press.
  215. 215 Gifford, W.M., Win, M.Z., and Chiani, M. (2005). Diversity with practical channel estimation. IEEE Transactions on Wireless Communications 4 (4): 1935–1947. doi: 10.1109/TWC.2005.852127.
  216. 216 Adinoyi, A. and Yanikomeroglu, H. (2007). Cooperative relaying in multi‐antenna fixed relay networks. IEEE Transactions on Wireless Communications 6 (2): 533–544. doi: 10.1109/TWC.2007.05227.
  217. 217 Renk, T., Kloeck, C., Burgkhardt, D., and Jondral, F.K. (2007). Cooperative communications in wireless networks ‐ a requested relaying protocol. 16th IST Mobile and Wireless Communications Summit, pp. 1–5. doi: 10.1109/ISTMWC.2007.4299037.
  218. 218 Pabst, R., Walke, B., Schultz, D. et al. (2004). Relay‐based deployment concepts for wireless and mobile broadband radio. IEEE Communications Magazine 42 (9): 80–89. doi: 10.1109/MCOM.2004.1336724.
  219. 219 He, X., Luo, T., and Yue, G. (2010). Optimized distributed MIMO for cooperative relay networks. IEEE Communications Letters 14 (1): 9–11. doi: 10.1109/LCOMM.2010.01.091457.
  220. 220 Chen, D. and Laneman, J.N. (2006). Modulation and demodulation for cooperative diversity in wireless systems. IEEE Transactions on Wireless Communications 5: 1785–1794.
  221. 221 Ng, C.T.K. and Huang, H. (2010). Linear precoding in cooperative MIMO cellular networks with limited coordination clusters. IEEE Journal on Selected Areas in Communications 28 (9): 1146–1454. doi: 10.1109/JSAC.2010.101206.
  222. 222 Chan, S. and Zukerman, M. (2002). Is max‐min fairness achievable in the presence of insubordinate users? IEEE Communications Letters 6 (3): 120–122. doi: 10.1109/4234.991152.
  223. 223 Saraydar, C., Mandayam, N., and Goodman, D. (2002). Efficient power control via pricing in wireless data networks. IEEE Transactions on Communications 50 (2): 291–303. doi: 10.1109/26.983324.
  224. 224 Pischella, M. and Belfiore, J.C. (2008). Power control in distributed cooperative OFDMA cellular networks. IEEE Transactions on Wireless Communications 7 (5): 1900–1906. doi: 10.1109/TWC.2008.061039.
  225. 225 Hanzo, L., El‐Hajjar, M., and Alamri, O. (2011). Near‐capacity wireless transceivers and cooperative communications in the MIMO era: evolution of standards, waveform design, and future perspectives. Proceedings of the IEEE 99 (8): 1343–1385. doi: 10.1109/JPROC.2011.2148150.
  226. 226 Han, Z., Ji, Z., and Liu, K.J.R. (2007). Non‐cooperative resource competition game by virtual referee in multi‐cell OFDMA networks. IEEE Journal on Selected Areas in Communications 25 (6): 1079–1090. doi: 10.1109/JSAC.2007.070803.
  227. 227 Mietzner, J., Schober, R., Lampe, L. et al. (2009). Multiple‐antenna techniques for wireless communications ‐ a comprehensive literature survey. IEEE Communication Surveys and Tutorials 11 (2): 87–105. doi: 10.1109/SURV.2009.090207.
  228. 228 del Coso, A., Spagnolini, U., and Ibars, C. (2007). Cooperative distributed MIMO channels in wireless sensor networks. IEEE Journal on Selected Areas in Communications 25 (2): 402–414. doi: 10.1109/JSAC.2007.070215.
  229. 229 Kramer, G., Gastpar, M., and Gupta, P. (2005). Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory 51 (9): 3037–3063. doi: 10.1109/TIT.2005.853304.
  230. 230 Laneman, J.N., Tse, D.N.C., and Wornell, G.W. (2004). Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Transactions on Information Theory 50 (12): 3062–3080. doi: 10.1109/TIT.2004.838089.
  231. 231 Genc, V., Murphy, S., Yu, Y., and Murphy, J. (2008). IEEE 802.16J relay‐based wireless access networks: an overview. IEEE Transactions on Wireless Communications 15 (5): 56–63. doi: PDF.
  232. 232 Nokia (2005). E‐utra link adaption: consideration on MIMO.
  233. 233 Mesleh, R., Ikki, S., and Alwakeel, M. (2011). Performance analysis of space shift keying with amplify and forward relaying. IEEE Communciations Letters 15 (12): 1350–1352. doi: 10.1109/LCOMM.2011.100611.111690.
  234. 234 Mesleh, R., Ikki, S.S., Tumar, I., and Alouneh, S. (2017). Decode‐and‐forward with quadrature spatial modulation in the presence of imperfect channel estimation. Physical Communication 24: 103–111. doi: https://10.1016/j.phycom.2017.06.005.
  235. 235 Mesleh, R., Ikki, S.S., Aggoune, E.H.M., and Mansour, A. (2012). Performance analysis of space shift keying (SSK) modulation with multiple cooperative relays. EURASIP Journal on Advances in Signal Processing 2012 (1): 201. doi: 10.1186/1687‐6180‐2012‐201.
  236. 236 Wen, M., Cheng, X., Poor, H.V., and Jiao, B. (2014). Use of SSK modulation in two‐way amplify‐and‐forward relaying. IEEE Transactions on Vehicular Technology 63 (3): 1498–1504. doi: 10.1109/TVT.2013.2277553.
  237. 237 Mesleh, R. and Ikki, S.S. (2013). Performance analysis of spatial modulation with multiple decode and forward relays. IEEE Wireless Communications Letters 2 (4): 423–426. doi: 10.1109/WCL.2013.051513.130256.
  238. 238 Stavridis, A., Basnayaka, D., Sinanovic, S. et al. (2014). A virtual MIMO dual‐hop architecture based on hybrid spatial modulation. IEEE Transactions on Communications 62 (9): 3161–3179. doi: 10.1109/TCOMM.2014.2343999.
  239. 239 Narayanan, S., Renzo, M.D., Graziosi, F., and Haas, H. (2016). Distributed spatial modulation: a cooperative diversity protocol for half‐duplex relay‐aided wireless networks. IEEE Transactions on Vehicular Technology 65 (5): 2947–2964. doi: 10.1109/TVT.2015.2442754.
  240. 240 Som, P. and Chockalingam, A. (2015). Performance analysis of space‐shift keying in decode‐and‐forward multihop MIMO networks. IEEE Transactions on Vehicular Technology 64 (1): 132–146. doi: 10.1109/TVT.2014.2318437.
  241. 241 Afana, A., Mesleh, R., Ikki, S., and Atawi, I.E. (2016). Performance of quadrature spatial modulation in amplify‐and‐forward cooperative relaying. IEEE Communications Letters 20 (2): 240–243. doi: 10.1109/LCOMM.2015.2509975.
  242. 242 Zhang, J., Li, Q., Kim, K.J. et al. (2016). On the performance of full‐duplex two‐way relay channels with spatial modulation. IEEE Transactions on Communications 64 (12): 4966–4982. doi: 10.1109/TCOMM.2016.2600661.
  243. 243 Mesleh, R. and Ikki, S.S. (2015). Space shift keying with amplify‐and‐forward MIMO? relaying. Transactions on Emerging Telecommunications Technologies 26 (4): 520–531. doi: 10.1002/ett.2611.
  244. 244 Altın, G., Aygölü, Ü., Basar, E., and Çelebi, M. (2017). Multiple‐input–multiple‐output cooperative spatial modulation systems. IET Communications 11 (15): 2289–2296.
  245. 245 Hasna, M.O. and Alouini, M.S. (2003). End‐to‐end performance of transmission systems with relays over Rayleigh‐fading channels. IEEE Transactions on Wireless Communications 2 (6): 1126–1131. doi: 10.1109/TWC.2003.819030.
  246. 246 Hasna, M.O. and Alouini, M.S. (2004). A performance study of dual‐hop transmissions with fixed gain relays. IEEE Transactions on Wireless Communications 3 (6): 1963–1968. doi: 10.1109/TWC.2004.837470.
  247. 247 Raed, M., Salama, I., Hadi, A., and Mansour, A. (2012). Performance analysis of space shift keying (SSK) modulation with multiple cooperative relays. EURASIP Journal on Advances in Signal Processing 2012 (1). doi: 10.1186/1687‐6180‐2012‐201.
  248. 248 Ikki, S.S. and Ahmed, M.H. (2010). Performance analysis of adaptive decode‐and‐forward cooperative diversity networks with best‐relay selection. IEEE Transactions on Communications 58 (1): 68–72. doi: 10.1109/TCOMM.2010.01.080080.
  249. 249 Beaulieu, N.C. and Hu, J. (2006). A closed‐form expression for the outage probability of decode‐and‐forward relaying in dissimilar Rayleigh fading channels. IEEE Communications Letters 10 (12): 813–815. doi: 10.1109/LCOMM.2006.061048.
  250. 250 Masnick, B. and Wolf, J. (1967). On linear unequal error protection codes. IEEE Transactions on Information Theory 13 (4): 600–607. doi: 10.1109/TIT.1967.1054054.
  251. 251 Rajashekar, R., Hari, K.V.S., and Hanzo, L. (2015). Quantifying the transmit diversity order of Euclidean distance based antenna selection in spatial modulation. IEEE Signal Processing Letters 22 (9): 1434–1437. doi: 10.1109/LSP.2015.2408574.
  252. 252 Lee, I.H. and Kim, D. (2007). BER analysis for decode‐and‐forward relaying in dissimilar Rayleigh fading channels. IEEE Communications Letters 11 (1): 52–54. doi: 10.1109/LCOMM.2007.061375.
  253. 253 Chen, H., Liu, J., Zheng, L. et al. (2010). An improved selection cooperation scheme for decode‐and‐forward relaying. IEEE Communciations Letters 14 (12): 1143–1145. doi: 10.1109/LCOMM.2010.102610.101115.
  254. 254 Thompson, J.S., Grant, P.M., and Mulgrew, B. (1996). Smart antenna arrays for CDMA systems. IEEE [see also IEEE Wireless Communications] Personal Communications 3 (5): 16–25. doi: 10.1109/98.542234.
  255. 255 Papavassiliou, S. and Tassiulus, L. (1998). Improving the capacity in wireless networks through integrated channel base station and power assignment. IEEE Transactions on Vehicular Technology 47 (2): 417–427. doi: 10.1109/25.669080.
  256. 256 Ju, H., Oh, E., and Hong, D. (2009). Catching resource‐devouring worms in next‐generation wireless relay systems: two‐way relay and full‐duplex relay. IEEE Communications Magazine 47 (9): 58–65. doi: 10.1109/MCOM.2009.5277456.
  257. 257 Pi, Z. and Khan, F. (2011). An introduction to millimeter‐wave mobile broadband systems. IEEE Communications Magazine 49 (6): 101–107. doi: 10.1109/MCOM.2011.5783993.
  258. 258 Rappaport, T., Sun, S., Mayzus, R. et al. (2013). Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1: 335–349. doi: 10.1109/ACCESS.2013.2260813.
  259. 259 Samimi, M.K. and Rappaport, T.S. (2016). 3‐D millimeter‐wave statistical channel model for 5G wireless system design. IEEE Transactions on Microwave Theory and Techniques 64 (7): 2207–2225. doi: 10.1109/TMTT.2016.2574851.
  260. 260 Wells, J. (2009). Faster than fiber: the future of multi‐G/S wireless. IEEE Microwave Magazine 10 (3): 104–112. doi: 10.1109/MMM.2009.932081.
  261. 261 Wells, J. (2006). Multigigabit wireless technology at 70 GHz, 80 GHz and 90 GHz. Defense Electronics Magazine.
  262. 262 Nie, S., MacCartney, G.R., Sun, S., and Rappaport, T.S. (2013). 72 GHz millimeter wave indoor measurements for wireless and backhaul communications. IEEE 24th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 2429–2433. doi: 10.1109/PIMRC.2013.6666553.
  263. 263 MacCartney, G.R. and Rappaport, T.S. (2014). 73 GHz millimeter wave propagation measurements for outdoor urban mobile and Backhaul communications in New York City. IEEE International Conference on Communication (ICC), pp. 4862–4867. doi: 10.1109/ICC.2014.6884090.
  264. 264 ITU‐R (2017). Characteristics of Precipitation for Propagation Modelling. Recommendation ITU‐R P.837–7.
  265. 265 IEEE 802.15.3c‐2009 (2009). mmWave WPAN. Amendment to IEEE Std 802.15.3‐2003.
  266. 266 IEEE Standard 802.11ad (2012). Wigig.
  267. 267 WirelessHD (2010). http://www.wirelesshd.org/ (accessed 12 December 2017).
  268. 268 Ahmadi‐Shokouh, J., Rafi, R., Taeb, A., and Safavi‐Naeini, S. (2015). Empirical MIMO beamforming and channel measurements at 57–64?GHz frequencies. Transactions on Emerginig Telecommunications Technologies 26 (6): 1003–1009. doi: 10.1002/ett.2794.
  269. 269 Maltsev, A., Sadri, A., Cordeiro, C., and Pudeyev, A. (2015). Practical LOS MIMO technique for short‐range millimeter‐wave systems. IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), pp. 1–6. doi: 10.1109/ICUWB.2015.7324501.
  270. 270 Torkildson, E., Zhang, H., and Madhow, U. (2010). Channel modeling for millimeter wave MIMO. Information Theory and Applications Workshop (ITA), pp. 1–8. doi: 10.1109/ITA.2010.5454109.
  271. 271 Shah, S.T., Kim, J.S., Bae, E.S. et al. (201). Radio resource management for 5G mobile communication systems with massive antenna structure. Transactions on Emerging Telecommunications Technologies 27 (4): 504–518. doi: 10.1002/ett.2986.
  272. 272 Torkildson, E., Madhow, U., and Rodwell, M. (2011). Indoor millimeter wave MIMO: feasibility and performance. IEEE Transactions on Wireless Communications 10 (12): 4150–4160. doi: 10.1109/TWC.2011.092911.101843.
  273. 273 Zhou, L. and Ohashi, Y. (2015). Performance analysis of mmWave LOS‐MIMO systems with uniform circular arrays. IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5. doi: 10.1109/VTCSpring.2015.7146001.
  274. 274 Liu, P. and Springer, A. (2015). Space shift keying for LOS communication at mmWave frequencies. IEEE Wireless Communications Letters 4 (2): 121–124.
  275. 275 Ishikawa, N., Rajashekar, R., Sugiura, S., and Hanzo, L. (2016). Generalized spatial modulation based reduced‐RF‐chain millimeter‐wave communications. IEEE Transactions on Vehicular Technology 99: 1.
  276. 276 Liu, P., Renzo, M.D., and Springer, A. (2017). Variable‐ generalized spatial modulation for indoor LOS mmWave communication: performance optimization and novel switching structure. IEEE Transactions on Communications 65 (6): 2625–2640. doi: 10.1109/TCOMM.2017.2676818.
  277. 277 Cui, Y., Fang, X., and Yan, L. (2016). Hybrid spatial modulation beamforming for mmWave railway communication systems. IEEE Transactions on Vehicular Technology 65 (12): 9597–9606. doi: 10.1109/TVT.2016.2614005.
  278. 278 Thomas, T.A., Nguyen, H.C., MacCartney, G.R., and Rappaport, T.S. (2014). 3D mmWave channel model proposal. IEEE 80th Vehicular Technology Conference (VTC Fall), pp. 1–6. doi: 10.1109/VTCFall.2014.6965800.
  279. 279 Rappaport, M.K.S.S.S.T.S. (2016). MIMO Channel Modeling and Capacity Analysis for 5G Millimeter‐Wave Wireless Systems. 10th European Conference on Antennas and Propagation (EuCAP'2016).
  280. 280 Samimi, M.K. and Rappaport, T.S. (2015). 3‐D statistical channel model for millimeter‐wave outdoor mobile broadband communications. Proceeding of the IEEE International Conference on Communciations. doi: 10.1109/ICC.2008.976.
  281. 281 Jammalamadaka, S.R. and Sengupta, A. (2001). Multivariate Analysis, Topics in Circular Statistics, vol. 5. World Scientific Pub Co Inc.
  282. 282 Gesbert, D., Bolcskei, H., Gore, D., and Paulraj, A. (2002). Outdoor MIMO wireless channels: models and performance prediction. IEEE Transactions on Communications 50 (12): 1926–1934.
  283. 283 Steinbauer, M., Molisch, A.F., and Bonek, E. (2001). The double‐directional radio channel. IEEE Antennas and Propagation Magazine 43 (4): 51–63. doi: 10.1109/74.951559.
  284. 284 Forenza, A., Love, D.J., and Heath, R.W. (2007). Simplified spatial correlation models for clustered MIMO channels with different array configurations. IEEE Transactions on Vehicular Technology 56 (4): 1924–1934. doi: 10.1109/TVT.2007.897212.
  285. 285 Molisch, A.F., Steinbauer, M., Toeltsch, M. et al. (2002). Capacity of MIMO systems based on measured wireless channels. IEEE Journal on Selected Areas in Communications 20 (3): 561–569. doi: 10.1109/49.995515.
  286. 286 Karttunen, P., Kalliola, K., Laakso, T., and Vainikainen, P. (1998). Measurement analysis of spatial and temporal correlation in wideband radio channels with adaptive antenna array. IEEE 1998 International Conference on Universal Personal Communications (ICUPC '98), vol. 1, pp. 671–675. doi: 10.1109/ICUPC.1998.733053.
  287. 287 Christodoulou, C.G., Tawk, Y., Lane, S.A., and Erwin, S.R. (2012). Reconfigurable antennas for wireless and space applications. Proceedings of the IEEE 100 (7): 2250–2261.
  288. 288 Ourir, A., Rachedi, K., Phan‐Huy, D.T. et al. (2017). Compact reconfigurable antenna with radiation pattern diversity for spatial modulation. 11th European Conference on Antennas and Propagation, Paris, France.
  289. 289 Phan‐Huy, D.T., Kokar, Y., Rioult, J. et al. (2017). First visual demonstration of transmit and receive spatial modulations using the radio wave display. 21st International ITG Workshop on Smart Antennas, Berlin, Germany.
  290. 290 Bouida, Z., El‐Sallabi, H., Abdallah, M. et al. (2016). Reconfigurable antenna‐based space‐shift keying for spectrum sharing systems under rician fading. IEEE Transactions on Communications 64 (9): 3970–3980.
  291. 291 Ishibashi, K. and Sugiura, S. (2014). Effects of antenna switching on band‐limited spatial modulation. IEEE Wireless Communications Letters 3 (4): 345–348. doi: 10.1109/LWC.2014.2315819.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset