Using support vector machines for classification tasks

In this recipe, we introduce support vector machines, or SVMs. These models can be used for classification and regression. Here, we illustrate how to use linear and nonlinear SVMs on a simple classification task. This recipe is inspired by an example in the scikit-learn documentation (see http://scikit-learn.org/stable/auto_examples/svm/plot_svm_nonlinear.html).

How to do it...

  1. Let's import the packages:
    >>> import numpy as np
        import pandas as pd
        import sklearn
        import sklearn.datasets as ds
        import sklearn.model_selection as ms
        import sklearn.svm as svm
        import matplotlib.pyplot as plt
        %matplotlib inline
  2. We generate 2D points and assign a binary label according to a linear operation on the coordinates:
    >>> X = np.random.randn(200, 2)
        y = X[:, 0] + X[:, 1] > 1
  3. We now fit a linear Support Vector Classifier (SVC). This classifier tries to separate the two groups of points with a linear boundary (a line here, but more generally a hyperplane):
    >>> # We train the classifier.
        est = svm.LinearSVC()
        est.fit(X, y)
  4. We define a function that displays the boundaries and decision function of a trained classifier:
    >>> # We generate a grid in the square [-3,3 ]^2.
        xx, yy = np.meshgrid(np.linspace(-3, 3, 500),
                             np.linspace(-3, 3, 500))
        
        # This function takes a SVM estimator as input.
        
        
        def plot_decision_function(est, title):
            # We evaluate the decision function on the grid.
            Z = est.decision_function(np.c_[xx.ravel(),
                                            yy.ravel()])
            Z = Z.reshape(xx.shape)
            cmap = plt.cm.Blues
        
            # We display the decision function on the grid.
            fig, ax = plt.subplots(1, 1, figsize=(5, 5))
            ax.imshow(Z,
                      extent=(xx.min(), xx.max(),
                              yy.min(), yy.max()),
                      aspect='auto',
                      origin='lower',
                      cmap=cmap)
        
            # We display the boundaries.
            ax.contour(xx, yy, Z, levels=[0],
                       linewidths=2,
                       colors='k')
        
            # We display the points with their true labels.
            ax.scatter(X[:, 0], X[:, 1],
                       s=50, c=.5 + .5 * y,
                       edgecolors='k',
                       lw=1, cmap=cmap,
                       vmin=0, vmax=1)
            ax.axhline(0, color='k', ls='--')
            ax.axvline(0, color='k', ls='--')
            ax.axis([-3, 3, -3, 3])
            ax.set_axis_off()
            ax.set_title(title)
  5. Let's take a look at the classification results with the linear SVC:
    >>> ax = plot_decision_function(
            est, "Linearly separable, linear SVC")
    How to do it...

    The linear SVC tried to separate the points with a line and it did a pretty good job here.

  6. We now modify the labels with an XOR function. A point's label is 1 if the coordinates have different signs. This classification is not linearly separable. Therefore, a linear SVC fails completely:
    >>> y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)
        
        # We train the classifier.
        est = ms.GridSearchCV(svm.LinearSVC(),
                              {'C': np.logspace(-3., 3., 10)})
        est.fit(X, y)
        print("Score: {0:.1f}".format(
              ms.cross_val_score(est, X, y).mean()))
        
        # We plot the decision function.
        ax = plot_decision_function(
            est, "XOR, linear SVC")
    Score: 0.5
    How to do it...
  7. Fortunately, it is possible to use nonlinear SVCs by using nonlinear kernels. Kernels specify a nonlinear transformation of the points into a higher dimensional space. Transformed points in this space are assumed to be more linearly separable. By default, the SVC classifier in scikit-learn uses the Radial Basis Function (RBF) kernel:
    >>> y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)
        
        est = ms.GridSearchCV(
            svm.SVC(), {'C': np.logspace(-3., 3., 10),
                        'gamma': np.logspace(-3., 3., 10)})
        est.fit(X, y)
        print("Score: {0:.3f}".format(
              ms.cross_val_score(est, X, y).mean()))
        
        plot_decision_function(
            est.best_estimator_, "XOR, non-linear SVC")
    Score: 0.955
    How to do it...

    This time, the nonlinear SVC successfully managed to classify these nonlinearly separable points.

How it works...

A two-class linear SVC tries to find a hyperplane (defined as a linear equation) that best separates the two sets of points (grouped according to their labels). There is also the constraint that this separating hyperplane needs to be as far as possible from the points. This method works best when such a hyperplane exists. Otherwise, this method can fail completely, as we saw in the XOR example. XOR is known as being a nonlinearly separable operation.

The SVM classes in scikit-learn have a C hyperparameter. This hyperparameter trades off misclassification of training examples against simplicity of the decision surface. A low C value makes the decision surface smooth, while a high C value aims at classifying all training examples correctly. This is another example where a hyperparameter quantifies the bias-variance trade-off. This hyperparameter can be chosen with cross-validation and grid search.

The linear SVC can also be extended to multiclass problems. The multiclass SVC is directly implemented in scikit-learn.

The nonlinear SVC works by considering a nonlinear transformation How it works... from the original space into a higher dimensional space. This nonlinear transformation can increase the linear separability of the classes. In practice, all dot products are replaced by the How it works... kernel.

How it works...

Non-linear SVC

There are several widely-used nonlinear kernels. By default, SVC uses Gaussian radial basis functions:

How it works...

Here, How it works... is a hyperparameter of the model that can be chosen with grid search and cross-validation.

The How it works... function does not need to be computed explicitly. This is the kernel trick; it suffices to know the kernel How it works.... The existence of a function How it works... corresponding to a given kernel How it works... is guaranteed by a mathematical theorem in functional analysis (Mercer's theorem).

There's more...

Here are a few references about support vector machines:

See also

  • The Predicting who will survive on the Titanic with logistic regression recipe
  • The Learning to recognize handwritten digits with a K-nearest neighbors classifier recipe
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset