Chapter 1. What Is IoT?

Imagine a world where just about anything you can think of is online and communicating to other things and people in order to enable new services that enhance our lives. From self-driving drones delivering your grocery order to sensors in your clothing monitoring your health, the world you know is set to undergo a major technological shift forward. This shift is known collectively as the Internet of Things (IoT).

The basic premise and goal of IoT is to “connect the unconnected.” This means that objects that are not currently joined to a computer network, namely the Internet, will be connected so that they can communicate and interact with people and other objects. IoT is a technology transition in which devices will allow us to sense and control the physical world by making objects smarter and connecting them through an intelligent network.1

When objects and machines can be sensed and controlled remotely across a network, a tighter integration between the physical world and computers is enabled. This allows for improvements in the areas of efficiency, accuracy, automation, and the enablement of advanced applications.

The world of IoT is broad and multifaceted, and you may even find it somewhat complicated at first due to the plethora of components and protocols that it encompasses. Instead of viewing IoT as a single technology domain, it is good to view it as an umbrella of various concepts, protocols, and technologies, all of which are at times somewhat dependent on a particular industry. While the wide array of IoT elements is designed to create numerous benefits in the areas of productivity and automation, at the same time it introduces new challenges, such as scaling the vast numbers of devices and amounts of data that need to be processed.

This chapter seeks to further define IoT and its various elements at a high level. Having this information will prepare you to tackle more in-depth IoT subjects in the following chapters. Specifically, this chapter explores the following topics:

Image Genesis of IoT: This section highlights IoT’s place in the evolution and development of the Internet.

Image IoT and Digitization: This section details the differences between IoT and digitization and defines a framework for better understanding their relationship.

Image IoT Impact: This section shares a few high-level scenarios and examples to demonstrate the influence IoT will have on our world.

Image Convergence of IT and OT: This section explores how IoT is bringing together information technology (IT) and operational technology (OT).

Image IoT Challenges: This section provides a brief overview of the difficulties involved in transitioning to an IoT-enabled world.

Genesis of IoT

The age of IoT is often said to have started between the years 2008 and 2009. During this time period, the number of devices connected to the Internet eclipsed the world’s population. With more “things” connected to the Internet than people in the world, a new age was upon us, and the Internet of Things was born.

The person credited with the creation of the term “Internet of Things” is Kevin Ashton. While working for Procter & Gamble in 1999, Kevin used this phrase to explain a new idea related to linking the company’s supply chain to the Internet.

Kevin has subsequently explained that IoT now involves the addition of senses to computers. He was quoted as saying: “In the twentieth century, computers were brains without senses—they only knew what we told them.” Computers depended on humans to input data and knowledge through typing, bar codes, and so on. IoT is changing this paradigm; in the twenty-first century, computers are sensing things for themselves.2

It is widely accepted that IoT is a major technology shift, but what is its scale and importance? Where does it fit in the evolution of the Internet?

As shown in Figure 1-1, the evolution of the Internet can be categorized into four phases. Each of these phases has had a profound impact on our society and our lives. These four phases are further defined in Table 1-1.

Image

Figure 1-1 Evolutionary Phases of the Internet

Image

Table 1-1 Evolutionary Phases of the Internet

Each of these evolutionary phases builds on the previous one. With each subsequent phase, more value becomes available for businesses, governments, and society in general.

The first phase, Connectivity, began in the mid-1990s. Though it may be hard to remember, or even imagine if you are younger, the world was not always connected as it is today. In the beginning, email and getting on the Internet were luxuries for universities and corporations. Getting the average person online involved dial-up modems, and even basic connectivity often seemed like a small miracle.

Even though connectivity and its speed continued to improve, a saturation point was reached where connectivity was no longer the major challenge. The focus was now on leveraging connectivity for efficiency and profit. This inflection point marked the beginning of the second phase of the Internet evolution, called the Networked Economy.

With the Networked Economy, e-commerce and digitally connected supply chains became the rage, and this caused one of the major disruptions of the past 100 years. Vendors and suppliers became closely interlinked with producers, and online shopping experienced incredible growth. The victims of this shift were traditional brick-and-mortar retailers. The economy itself became more digitally intertwined as suppliers, vendors, and consumers all became more directly connected.

The third phase, Immersive Experiences, is characterized by the emergence of social media, collaboration, and widespread mobility on a variety of devices. Connectivity is now pervasive, using multiple platforms from mobile phones to tablets to laptops and desktop computers. This pervasive connectivity in turn enables communication and collaboration as well as social media across multiple channels, via email, texting, voice, and video. In essence, person-to-person interactions have become digitized.

The latest phase is the Internet of Things. Despite all the talk and media coverage of IoT, in many ways we are just at the beginning of this phase. When you think about the fact that 99% of “things” are still unconnected, you can better understand what this evolutionary phase is all about. Machines and objects in this phase connect with other machines and objects, along with humans. Business and society have already started down this path and are experiencing huge increases in data and knowledge. In turn, this is now leading to previously unrecognized insights, along with increased automation and new process efficiencies. IoT is poised to change our world in new and exciting ways, just as the past Internet phases already have.

IoT and Digitization

IoT and digitization are terms that are often used interchangeably. In most contexts, this duality is fine, but there are key differences to be aware of.

At a high level, IoT focuses on connecting “things,” such as objects and machines, to a computer network, such as the Internet. IoT is a well-understood term used across the industry as a whole. On the other hand, digitization can mean different things to different people but generally encompasses the connection of “things” with the data they generate and the business insights that result.

For example, in a shopping mall where Wi-Fi location tracking has been deployed, the “things” are the Wi-Fi devices. Wi-Fi location tracking is simply the capability of knowing where a consumer is in a retail environment through his or her smart phone’s connection to the retailer’s Wi-Fi network. While the value of connecting Wi-Fi devices or “things” to the Internet is obvious and appreciated by shoppers, tracking real-time location of Wi-Fi clients provides a specific business benefit to the mall and shop owners. In this case, it helps the business understand where shoppers tend to congregate and how much time they spend in different parts of a mall or store. Analysis of this data can lead to significant changes to the locations of product displays and advertising, where to place certain types of shops, how much rent to charge, and even where to station security guards.


Note

For several years the term Internet of Everything, or IoE, was used extensively. Over time, the term IoE has been replaced by the term digitization. Although technical terms tend to evolve over time, the words IoE and digitization have roughly the same definition. IoT has always been a part of both, but it is important to note that IoT is a subset of both IoE and digitization.


Digitization, as defined in its simplest form, is the conversion of information into a digital format. Digitization has been happening in one form or another for several decades. For example, the whole photography industry has been digitized. Pretty much everyone has digital cameras these days, either standalone devices or built into their mobile phones. Almost no one buys film and takes it to a retailer to get it developed. The digitization of photography has completely changed our experience when it comes to capturing images.

Other examples of digitization include the video rental industry and transportation. In the past, people went to a store to rent or purchase videotapes or DVDs of movies. With digitization, just about everyone is streaming video content or purchasing movies as downloadable files.

The transportation industry is currently undergoing digitization in the area of taxi services. Businesses such as Uber and Lyft use digital technologies to allow people to get a ride using a mobile phone app. This app identifies the car, the driver, and the fare. The rider then pays the fare by using the app. This digitization is a major disruptive force to companies providing traditional taxi services.

In the context of IoT, digitization brings together things, data, and business process to make networked connections more relevant and valuable. A good example of this that many people can relate to is in the area of home automation with popular products, such as Nest. With Nest, sensors determine your desired climate settings and also tie in other smart objects, such as smoke alarms, video cameras, and various third-party devices. In the past, these devices and the functions they perform were managed and controlled separately and could not provide the holistic experience that is now possible. Nest is just one example of digitization and IoT increasing the relevancy and value of networked, intelligent connections and making a positive impact on our lives.

Companies today look at digitization as a differentiator for their businesses, and IoT is a prime enabler of digitization. Smart objects and increased connectivity drive digitization, and this is one of the main reasons that many companies, countries, and governments are embracing this growing trend.

IoT Impact

Projections on the potential impact of IoT are impressive. About 14 billion, or just 0.06%, of “things” are connected to the Internet today. Cisco Systems predicts that by 2020, this number will reach 50 billion. A UK government report speculates that this number could be even higher, in the range of 100 billion objects connected. Cisco further estimates that these new connections will lead to $19 trillion in profits and cost savings.3 Figure 1-2 provides a graphical look at the growth in the number of devices being connected.

Image

Figure 1-2 The Rapid Growth in the Number of Devices Connected to the Internet

What these numbers mean is that IoT will fundamentally shift the way people and businesses interact with their surroundings. Managing and monitoring smart objects using real-time connectivity enables a whole new level of data-driven decision making. This in turn results in the optimization of systems and processes and delivers new services that save time for both people and businesses while improving the overall quality of life.

The following examples illustrate some of the benefits of IoT and their impact. These examples will provide you with a high-level view of practical IoT use cases to clearly illustrate how IoT will affect everyday life. For more in-depth use cases, please refer to the chapters in Part III, “IoT in Industry.”

Connected Roadways

People have been fantasizing about the self-driving car, or autonomous vehicle, in literature and film for decades. While this fantasy is now becoming a reality with well-known projects like Google’s self-driving car, IoT is also a necessary component for implementing a fully connected transportation infrastructure.

IoT is going to allow self-driving vehicles to better interact with the transportation system around them through bidirectional data exchanges while also providing important data to the riders. Self-driving vehicles need always-on, reliable communications and data from other transportation-related sensors to reach their full potential. Connected roadways is the term associated with both the driver and driverless cars fully integrating with the surrounding transportation infrastructure. Figure 1-3 shows a self-driving car designed by Google.

Image

Figure 1-3 Google’s Self-Driving Car

Basic sensors reside in cars already. They monitor oil pressure, tire pressure, temperature, and other operating conditions, and provide data around the core car functions. From behind the steering wheel, the driver can access this data while also controlling the car using equipment such as a steering wheel, pedals, and so on. The need for all this sensory information and control is obvious. The driver must be able to understand, handle, and make critical decisions while concentrating on driving safely. The Internet of Things is replicating this concept on a much larger scale.

Today, we are seeing automobiles produced with thousands of sensors, to measure everything from fuel consumption to location to the entertainment your family is watching during the ride. As automobile manufacturers strive to reinvent the driving experience, these sensors are becoming IP-enabled to allow easy communication with other systems both inside and outside the car. In addition, new sensors and communication technologies are being developed to allow vehicles to “talk” to other vehicles, traffic signals, school zones, and other elements of the transportation infrastructure. We are now starting to realize a truly connected transportation solution.

Most connected roadways solutions focus on resolving today’s transportation challenges. These challenges can be classified into the three categories highlighted in Table 1-2.

Image

Table 1-2 Current Challenges Being Addressed by Connected Roadways

By addressing the challenges in Table 1-2, connected roadways will bring many benefits to society. These benefits include reduced traffic jams and urban congestion, decreased casualties and fatalities, increased response time for emergency vehicles, and reduced vehicle emissions.

For example, with IoT-connected roadways, a concept known as Intersection Movement Assist (IMA) is possible. This application warns a driver (or triggers the appropriate response in a self-driving car) when it is not safe to enter an intersection due to a high probability of a collision—perhaps because another car has run a stop sign or strayed into the wrong lane. Thanks to the communications system between the vehicles and the infrastructure, this sort of scenario can be handled quickly and safely. See Figure 1-4 for a graphical representation of IMA.

Image

Figure 1-4 Application of Intersection Movement Assist

IMA is one of many possible roadway solutions that emerge when we start to integrate IoT with both traditional and self-driving vehicles. Other solutions include automated vehicle tracking, cargo management, and road weather communications.

With automated vehicle tracking, a vehicle’s location is used for notification of arrival times, theft prevention, or highway assistance. Cargo management provides precise positioning of cargo as it is en route so that notification alerts can be sent to a dispatcher and routes can be optimized for congestion and weather. Road weather communications use sensors and data from satellites, roads, and bridges to warn vehicles of dangerous conditions or inclement weather on the current route.

Today’s typical road car utilizes more than a million lines of code—and this only scratches the surface of the data potential. As cars continue to become more connected and capable of generating continuous data streams related to location, performance, driver behavior, and much more, the data generation potential of a single car is staggering. It is estimated that a fully connected car will generate more than 25 gigabytes of data per hour, much of which will be sent to the cloud. To put this in perspective, that’s equivalent to a dozen HD movies sent to the cloud every hour—by your car! Multiply that by the number of hours a car is driven per year and again by the number of cars on the road, and you see that the amount of connected car data generated, transmitted, and stored in the cloud will be in the zettabytes range per year (more than a billion petabytes per year). Figure 1-5 provides an overview of the sort of sensors and connectivity that you will find in a connected car.

Image

Figure 1-5 The Connected Car

Another area where connected roadways are undergoing massive disruption is in how the data generated by a car will be used by third parties. Clearly, the data generated by your car needs to be handled in a secure and reliable way, which means the network needs to be secure, it must provide authentication and verification of the driver and car, and it needs to be highly available. But who will use all this data? Automobile data is extremely useful to a wide range of interested parties. For example, tire companies can collect data related to use and durability of their products in a range of environments in real time. Automobile manufacturers can collect information from sensors to better understand how the cars are being driven, when parts are starting to fail, or whether the car has broken down—details that will help them build better cars in the future. This becomes especially true as autonomous vehicles are introduced, which are sure to be driven in a completely different way than the traditional family car.

In the future, car sensors will be able to interact with third-party applications, such as GPS/maps, to enable dynamic rerouting to avoid traffic, accidents, and other hazards. Similarly, Internet-based entertainment, including music, movies, and other streamings or downloads, can be personalized and customized to optimize a road trip.

This data will also be used for targeted advertising. As GPS navigation systems become more integrated with sensors and wayfinding applications, it will become possible for personalized routing suggestions to be made. For example, if it is known that you prefer a certain coffee shop, through the use of a cloud-based data connector, the navigation system will be able to provide routing suggestions that have you drive your car past the right coffee shop.

All these data opportunities bring into play a new technology: the IoT data broker. Imagine the many different types of data generated by an automobile and the plethora of different parties interested in this data. This poses a significant business opportunity. In a very real sense, the data generated by the car and driver becomes a valuable commodity that can be bought and sold. While the data transmitted from the car will likely go to one initial location in the cloud, from there the data can be separated and sold selectively by the data broker. For example, tire companies will pay for information from sensors related to your tires, but they won’t get anything else. While information brokers have been around a long time, the technology used to aggregate and separate the data from connected cars in a secure and governed manner is rapidly developing and will continue to be a major focus of the IoT industry for years to come.

Connected roadways are likely to be one of the biggest growth areas for innovation. Automobiles and the roads they use have seen incredible change over the past century, but the changes ahead of us are going to be just as astonishing. In the past few years alone, we have seen highway systems around the world adopt sophisticated sensors systems that can detect seismic vibrations, car accidents, severe weather conditions, traffic congestion, and more. Recent advancements in roadway fiber-optic sensing technology is now able to record not only how many cars are passing but their speed and type. Due to the many reasons already discussed, connected cars and roadways are early adopters of IoT technology. For a more in-depth discussion of IoT use cases and architectures in the transportation industry, see Chapter 13, “Transportation.”

Connected Factory

For years, traditional factories have been operating at a disadvantage, impeded by production environments that are “disconnected” or, at the very least, “strictly gated” to corporate business systems, supply chains, and customers and partners. Managers of these traditional factories are essentially “flying blind” and lack visibility into their operations. These operations are composed of plant floors, front offices, and suppliers operating in independent silos. Consequently, rectifying downtime issues, quality problems, and the root causes of various manufacturing inefficiencies is often difficult.

The main challenges facing manufacturing in a factory environment today include the following:

Image Accelerating new product and service introductions to meet customer and market opportunities

Image Increasing plant production, quality, and uptime while decreasing cost

Image Mitigating unplanned downtime (which wastes, on average, at least 5% of production)

Image Securing factories from cyber threats

Image Decreasing high cabling and re-cabling costs (up to 60% of deployment costs)

Image Improving worker productivity and safety4

Adding another level of complication to these challenges is the fact that they often need to be addressed at various levels of the manufacturing business. For example, executive management is looking for new ways to manufacture in a more cost-effective manner while balancing the rising energy and material costs. Product development has time to market as the top priority. Plant managers are entirely focused on gains in plant efficiency and operational agility. The controls and automation department looks after the plant networks, controls, and applications and therefore requires complete visibility into all these systems.

Industrial enterprises around the world are retooling their factories with advanced technologies and architectures to resolve these problems and boost manufacturing flexibility and speed. These improvements help them achieve new levels of overall equipment effectiveness, supply chain responsiveness, and customer satisfaction. A convergence of factory-based operational technologies and architectures with global IT networks is starting to occur, and this is referred to as the connected factory.

As with the IoT solutions for the connected roadways previously discussed, there are already large numbers of basic sensors on factory floors. However, with IoT, these sensors not only become more advanced but also attain a new level of connectivity. They are smarter and gain the ability to communicate, mainly using the Internet Protocol (IP) over an Ethernet infrastructure.

In addition to sensors, the devices on the plant floor are becoming smarter in their ability to transmit and receive large quantities of real-time informational and diagnostic data. Ethernet connectivity is becoming pervasive and spreading beyond just the main controllers in a factory to devices such as the robots on the plant floor. In addition, more IP-enabled devices, including video cameras, diagnostic smart objects, and even personal mobile devices, are being added to the manufacturing environment.

For example, a smelting facility extracts metals from their ores. The facility uses both heat and chemicals to decompose the ore, leaving behind the base metal. This is a multistage process, and the data and controls are all accessed via various control rooms in a facility. Operators must go to a control room that is often hundreds of meters away for data and production changes. Hours of operator time are often lost to the multiple trips to the control room needed during a shift. With IoT and a connected factory solution, true “machine-to-people” connections are implemented to bring sensor data directly to operators on the floor via mobile devices. Time is no longer wasted moving back and forth between the control rooms and the plant floor. In addition, because the operators now receive data in real time, decisions can be made immediately to improve production and fix any quality problems.

Another example of a connected factory solution involves a real-time location system (RTLS). An RTLS utilizes small and easily deployed Wi-Fi RFID tags that attach to virtually any material and provide real-time location and status. These tags enable a facility to track production as it happens. These IoT sensors allow components and materials on an assembly line to “talk” to the network. If each assembly line’s output is tracked in real time, decisions can be made to speed up or slow production to meet targets, and it is easy to determine how quickly employees are completing the various stages of production. Bottlenecks at any point in production and quality problems are also quickly identified.

While we tend to look at IoT as an evolution of the Internet, it is also sparking an evolution of industry. In 2016 the World Economic Forum referred to the evolution of the Internet and the impact of IoT as the “fourth Industrial Revolution.”5 The first Industrial Revolution occurred in Europe in the late eighteenth century, with the application of steam and water to mechanical production. The second Industrial Revolution, which took place between the early 1870s and the early twentieth century, saw the introduction of the electrical grid and mass production. The third revolution came in the late 1960s/early 1970s, as computers and electronics began to make their mark on manufacturing and other industrial systems. The fourth Industrial Revolution is happening now, and the Internet of Things is driving it. Figure 1-6 summarizes these four Industrial Revolutions as Industry 1.0 through Industry 4.0.

Image

Figure 1-6 The Four Industrial Revolutions

The IoT wave of Industry 4.0 takes manufacturing from a purely automated assembly line model of production to a model where the machines are intelligent and communicate with one another. IoT in manufacturing brings with it the opportunity for inserting intelligence into factories. This starts with creating smart objects, which involves embedding sensors, actuators, and controllers into just about everything related to production. Connections tie it all together so that people and machines work together to analyze the data and make intelligent decisions. Eventually this leads to machines predicting failures and self-healing and points to a world where human monitoring and intervention are no longer necessary.

Smart Connected Buildings

Another place IoT is making a disruptive impact is in the smart connected buildings space. In the past several decades, buildings have become increasingly complex, with systems overlaid one upon another, resulting in complex intersections of structural, mechanical, electrical, and IT components. Over time, these operational networks that support the building environment have matured into sophisticated systems; however, for the most part, they are deployed and managed as separate systems that have little to no interaction with each other.

The function of a building is to provide a work environment that keeps the workers comfortable, efficient, and safe. Work areas need to be well lit and kept at a comfortable temperature. To keep workers safe, the fire alarm and suppression system needs to be carefully managed, as do the door and physical security alarm systems. While intelligent systems for modern buildings are being deployed and improved for each of these functions, most of these systems currently run independently of each other—and they rarely take into account where the occupants of the building actually are and how many of them are present in different parts of the building. However, many buildings are beginning to deploy sensors throughout the building to detect occupancy. These tend to be motion sensors or sensors tied to video cameras. Motion detection occupancy sensors work great if everyone is moving around in a crowded room and can automatically shut the lights off when everyone has left, but what if a person in the room is out of sight of the sensor? It is a frustrating matter to be at the mercy of an unintelligent sensor on the wall that wants to turn off the lights on you.

Similarly, sensors are often used to control the heating, ventilation, and air-conditioning (HVAC) system. Temperature sensors are spread throughout the building and are used to influence the building management system’s (BMS’s) control of air flow into a room.

Another interesting aspect of the smart building is that it makes them easier and cheaper to manage. Considering the massive costs involved in operating such complex structures, not to mention how many people spend their working lives inside a building, managers have become increasingly interested in ways to make buildings more efficient and cheaper to manage. Have you ever heard people complain that they had too little working space in their office, or that the office space wasn’t being used efficiently? When people go to their managers and ask for a change to the floor plan, such as asking for an increase in the amount of space they work in, they are often asked to prove their case. But workplace floor efficiency and usage evidence tends to be anecdotal at best. When smart building sensors and occupancy detection are combined with the power of data analytics (discussed in Chapter 7, “Data and Analytics for IoT”), it becomes easy to demonstrate floor plan usage and prove your case. Alternatively, the building manager can use a similar approach to see where the floor is not being used efficiently and use this information to optimize the available space. This has brought about the age of building automation, empowered by IoT.

While many technical solutions exist for looking after building systems, until recently they have all required separate overlay networks, each responsible for its assigned task. In an attempt to connect these systems into a single framework, the building automation system (BAS) has been developed to provide a single management system for the HVAC, lighting, fire alarm, and detection systems, as well as access control. All these systems may support different types of sensors and connections to the BAS. How do you connect them together so the building can be managed in a coherent way? This highlights one of the biggest challenges in IoT, which is discussed throughout this book: the heterogeneity of IoT systems.

Before you can bring together heterogeneous systems, they need to converge at the network layer and support a common services layer that allows application integration. The value of converged networks is well documented. For example, in the early 2000s, Cisco and several other companies championed the convergence of voice and video onto single IP networks that were shared with other IT applications. The economies of scale and operational efficiencies gained were so massive that VoIP and collaboration technologies are now the norm. However, the convergence to IP and a common services framework for buildings has been slower.

For example, the de facto communication protocol responsible for building automation is known as BACnet (Building Automation and Control Network). In a nutshell, the BACnet protocol defines a set of services that allow Ethernet-based communication between building devices such as HVAC, lighting, access control, and fire detection systems. The same building Ethernet switches used for IT may also be used for BACnet. This standardization also makes possible an intersection point to the IP network (which is run by the IT department) through the use of a gateway device. In addition, BACnet/IP has been defined to allow the “things” in the building network to communicate over IP, thus allowing closer consolidation of the building management system on a single network. Figure 1-7 illustrates the conversion of building protocols to IP over time.

Image

Figure 1-7 Convergence of Building Technologies to IP

Another promising IoT technology in the smart connected building, and one that is seeing widespread adoption, is the “digital ceiling.” The digital ceiling is more than just a lighting control system. This technology encompasses several of the building’s different networks—including lighting, HVAC, blinds, CCTV (closed-circuit television), and security systems—and combines them into a single IP network. Figure 1-8 provides a framework for the digital ceiling.

Image

Figure 1-8 A Framework for the Digital Ceiling

Central to digital ceiling technology is the lighting system. As you are probably aware, the lighting market is currently going through a major shift toward light-emitting diodes (LEDs). Compared to traditional lighting, LEDs offer lower energy consumption and far longer life. The lower power requirements of LED fixtures allow them to run on Power over Ethernet (PoE), permitting them to be connected to standard network switches.

In a digital ceiling environment, every luminaire or lighting fixture is directly network-attached, providing control and power over the same infrastructure. This transition to LED lighting means that a single converged network is now able to encompasses luminaires that are part of consolidated building management as well as elements managed by the IT network, supporting voice, video, and other data applications.

The next time you look at the ceiling in your office building, count the number of lights. The quantity of lights easily outnumbers the number of physical wired ports—by a hefty margin. Obviously, supporting the larger number of Ethernet ports and density of IP addresses requires some redesign of the network, and it also requires a quiet, fanless PoE-capable switch in the ceiling. That being said, the long-term business case supporting reduced energy costs from LED luminaries versus traditional fluorescent or halogen lights is so significant that the added initial investment in the network is almost inconsequential. The business case for the digital ceiling becomes even stronger when a building is being renovated or a new structure is being built. In these cases, the cost benefit of running CAT 6/5e cables in the ceiling versus plenum-rated electrical wiring to every light is substantial.

The energy savings value of PoE-enabled LED lighting in the ceiling is clear. However, having an IP-enabled sensor device in the ceiling at every point people may be present opens up an entirely new set of possibilities. For example, most modern LED ceiling fixtures support occupancy sensors. These sensors provide high-resolution occupancy data collection, which can be used to turn the lights on and off, and this same data can be combined with advanced analytics to control other systems, such as HVAC and security. Unlike traditional sensors that use rudimentary motion detection, modern lighting sensors integrate a variety of occupancy-sensing technologies, including Bluetooth low energy (BLE) and Wi-Fi. The science here is simple: Because almost every person these days carries a smart device that supports BLE and Wi-Fi, all the sensor has to do is detect BLE or Wi-Fi beacons from a nearby device. When someone walks near a light, the person’s location is detected, and the wireless system can send information to control the air flow from the HVAC system into that zone in real time, maximizing the comfort of the office worker. Figure 1-9 shows an example of an occupancy sensor in a digital ceiling light.

Image

Figure 1-9 An LED Digital Ceiling Light with Occupancy Sensor

(Photo by Bill MacGowan)

You can begin to imagine the possibilities that IoT smart lighting brings to a workplace setting. Not only does it provide for optimized levels of lighting based on actual occupancy and building usage, it allows granular control of temperature, management of smoke and fire detection, video cameras, and building access control. IoT allows all this to run through a single network, requiring less installation time and a lower total cost of system ownership.

Smart Creatures

When you think about IoT, you probably picture only inanimate objects and machines being connected. However, IoT also provides the ability to connect living things to the Internet. Sensors can be placed on animals and even insects just as easily as on machines, and the benefits can be just as impressive.

One of the most well-known applications of IoT with respect to animals focuses on what is often referred to as the “connected cow.” Sparked, a Dutch company, developed a sensor that is placed in a cow’s ear. The sensor monitors various health aspects of the cow as well as its location and transmits the data wirelessly for analysis by the farmer.

The data from each of these sensors is approximately 200 MB per year, and you obviously need a network infrastructure to make the connection with the sensors and store the information. Once the data is being collected, however, you get a complete view of the herd, with statistics on every cow. You can learn how environmental factors may be affecting the herd as a whole and about changes in diet. This enables early detection of disease as cows tend to eat less days before they show symptoms. These sensors even allow the detection of pregnancy in cows.

Another application of IoT to organisms involves the placement of sensors on roaches. While the topic of roaches is a little unsettling to many folks, the potential benefits of IoT-enabled roaches could make a life-saving difference in disaster situations.

Researchers at North Carolina State University are working with Madagascar hissing cockroaches in the hopes of helping emergency personnel rescue survivors after a disaster. As shown in Figure 1-10, an electronic backpack attaches to a roach. This backpack communicates with the roach through parts of its body. Low-level electrical pulses to an antenna on one side makes the roach turn to the opposite side because it believes it is encountering an obstacle. The cerci of the roach are sensory organs on the abdomen that detect danger through changing air currents. When the backpack stimulates the cerci, the roach moves forward because it thinks a predator is approaching.

Image

Figure 1-10 IoT-Enabled Roach Can Assist in Finding Survivors After a Disaster (Photo courtesy of Alper Bozkurt, NC State University)

The electronic backpack uses wireless communication to a controller and can be “driven” remotely. Imagine a fleet of these roaches being used in a disaster scenario, such as searching for survivors in a collapsed building after an earthquake. The roaches are naturally designed to efficiently move around objects in confined spaces. Technology has also been tested to keep the roaches in the disaster area; it is similar to the invisible fencing that is often used to keep dogs in a yard. The use of roaches in this manner allows for the mapping of spaces that rescue personnel cannot access, which helps search for survivors.

To help with finding a person trapped in the rubble of a collapsed building, the electronic backpack is equipped with directional microphones that allow for the detection of certain sounds and the direction from which they are coming. Software can analyze the sounds to ensure that they are from a person rather than from, say, a leaking pipe. Roaches can then be steered toward the sounds that may indicate people who are trapped. In addition, the microphones provide the ability for rescue personnel to listen in on whatever sounds are detected.

These examples show that IoT often goes beyond just adding sensors and more intelligence to nonliving “things.” Living “things” can also be connected to the Internet and this connection can provide important results.

Convergence of IT and OT

Until recently, information technology (IT) and operational technology (OT) have for the most part lived in separate worlds. IT supports connections to the Internet along with related data and technology systems and is focused on the secure flow of data across an organization. OT monitors and controls devices and processes on physical operational systems. These systems include assembly lines, utility distribution networks, production facilities, roadway systems, and many more. Typically, IT did not get involved with the production and logistics of OT environments.

Specifically, the IT organization is responsible for the information systems of a business, such as email, file and print services, databases, and so on. In comparison, OT is responsible for the devices and processes acting on industrial equipment, such as factory machines, meters, actuators, electrical distribution automation devices, SCADA (supervisory control and data acquisition) systems, and so on. Traditionally, OT has used dedicated networks with specialized communications protocols to connect these devices, and these networks have run completely separately from the IT networks.

Management of OT is tied to the lifeblood of a company. For example, if the network connecting the machines in a factory fails, the machines cannot function, and production may come to a standstill, negatively impacting business on the order of millions of dollars. On the other hand, if the email server (run by the IT department) fails for a few hours, it may irritate people, but it is unlikely to impact business at anywhere near the same level. Table 1-3 highlights some of the differences between IT and OT networks and their various challenges.

Image

Table 1-3 Comparing Operational Technology (OT) and Information Technology (IT)

With the rise of IoT and standards-based protocols, such as IPv6, the IT and OT worlds are converging or, more accurately, OT is beginning to adopt the network protocols, technology, transport, and methods of the IT organization, and the IT organization is beginning to support the operational requirements used by OT. When IT and OT begin using the same networks, protocols, and processes, there are clear economies of scale. Not only does convergence reduce the amount of capital infrastructure needed but networks become easier to operate, and the flexibility of open standards allows faster growth and adaptability to new technologies.

However, as you can see from Table 1-3, the convergence of IT and OT to a single consolidated network poses several challenges. There are fundamental cultural and priority differences between these two organizations. IoT is forcing these groups to work together, when in the past they have operated rather autonomously. For example, the OT organization is baffled when IT schedules a weekend shutdown to update software without regard to production requirements. On the other hand, the IT group does not understand the prevalence of proprietary or specialized systems and solutions deployed by OT.

Take the case of deploying quality of service (QoS) in a network. When the IT team deploys QoS, voice and video traffic are almost universally treated with the highest level of service. However, when the OT system shares the same network, a very strong argument can be made that the real-time OT traffic should be given a higher priority than even voice because any disruption in the OT network could impact the business.

With the merging of OT and IT, improvements are being made to both systems. OT is looking more toward IT technologies with open standards, such as Ethernet and IP. At the same time, IT is becoming more of a business partner with OT by better understanding business outcomes and operational requirements.

The overall benefit of IT and OT working together is a more efficient and profitable business due to reduced downtime, lower costs through economy of scale, reduced inventory, and improved delivery times. When IT/OT convergence is managed correctly, IoT becomes fully supported by both groups. This provides a “best of both worlds” scenario, where solid industrial control systems reside on an open, integrated, and secure technology foundation.6

IoT Challenges

While an IoT-enabled future paints an impressive picture, it does not come without significant challenges. Many parts of IoT have become reality, but certain obstacles need to be overcome for IoT to become ubiquitous throughout industry and our everyday life. Table 1-4 highlights a few of the most significant challenges and problems that IoT is currently facing.

Image
Image

Table 1-4 IoT Challenges

Summary

This chapter provides an introductory look at the Internet of Things and answers the question “What is IoT?” IoT is about connecting the unconnected, enabling smart objects to communicate with other objects, systems, and people. The end result is an intelligent network that allows more control of the physical world and the enablement of advanced applications.

This chapter also provides a historical look at IoT, along with a current view of IoT as the next evolutionary phase of the Internet. This chapter details a few high-level use cases to show the impact of IoT and some of the ways it will be changing our world.

A number of IoT concepts and terms are defined throughout this chapter. The differences between IoT and digitization are discussed, as well as the convergence between IT and OT. The last section details the challenges faced by IoT.

This chapter should leave you with a clearer understanding of what IoT is all about. In addition, this chapter serves as the foundational block from which you can dive further into IoT in the following chapters.

References

1. Lindsay Hiebert, Public Safety Blog Series-Connecting the Unconnected in Public Safety Response, https://blogs.cisco.com/government/connecting-the-unconnected-in-public-safety-response, October 25, 2013.

2. Arik Gabbai, “Kevin Ashton describes the Internet of Things,” Smithsonian Magazine, January 2015, www.smithsonianmag.com/innovation/kevin-ashton-describes-the-internet-of-things-180953749/.

3. UK Government Chief Scientific Adviser, The Internet of Things: Making the Most of the Second Digital Revolution, Accessed December 2016, www.gov.uk/government/uploads/system/uploads/attachment_data/file/389315/14-1230-internet-of-things-review.pdf.

4. Cisco, The Cisco Connected Factory: Powering a Renaissance in Manufacturing (white paper), Accessed December 2016, www.cisco.com/c/dam/m/es_la/|internet-of-everything-ioe/industrial/assets/pdfs/cisco-connected-factory.pdf.

5. Klaus Schwab, The Fourth Industrial Revolution: What It Means, How to Respond, https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/

6. Adapted from Rockwell/Cisco presentation, https://salesconnect.cisco.com/#/content-detail/a5c09760-7260-4870-9019-0fb6a4a98af0 (Login required).

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset