References

  1. [1] M. Ismail and W. Zhuang, Cooperative Networking in a Heterogeneous Wireless Medium, Springer Briefs in Computer Science, Springer-Verlag, New York, April 2013.
  2. [2] T. Chen, Y. Yang, H. Zhang, H. Kim, and K. Horneman, “Network energy saving technologies for green wireless access networks,” IEEE Wireless Commun., vol. 8, no. 5, pp. 30–38, Oct. 2011.
  3. [3] D. Cavalcanti, D. P., Agrawal, C. Cordeiro, B. Xie, and A. Kumar “Issues in integrating cellular networks, WLANs, and MANETs: a futuristic heterogeneous wireless network,” IEEE Wireless Commun. Mag., vol. 12, no. 3, pp. 30–41, Jun. 2005.
  4. [4] M. Ismail and W. Zhuang, “A distributed multi-service resource allocation algorithm in heterogeneous wireless access medium,” IEEE J. Sel. Areas Commun., vol. 30, no. 2, pp. 425–432, Feb. 2012.
  5. [5] M. Ismail, A. Abdrabou, and W. Zhuang, “Cooperative decentralized resource allocation in heterogeneous wireless access medium,” IEEE Trans. Wireless Commun., vol. 12, no. 2, pp. 714–724, Feb. 2013.
  6. [6] M. Ismail and W. Zhuang, “Decentralized radio resource allocation for single-network and multi-homing services in cooperative heterogeneous wireless access medium,” IEEE Trans. Wireless Commun., vol. 11, no. 11, pp. 4085–4095, Nov. 2012.
  7. [7] Z. Hasan, H. Boostanimehr, and V. K. Bhargava, “Green cellular networks: a survey, some research issues and challenges,” IEEE Commun. Surv. Tutorials, vol. 13, no. 4, pp. 524–540, Sept. 2011.
  8. [8] C. Han, T. Harrold, S. Armour, and I. Krikidis, “Green radio: radio techniques to enable energy-efficient wireless networks,” IEEE Commun. Mag., vol. 49, no. 6, pp. 46–54, Jun. 2011.
  9. [9] Y. Chen, S. Zhang, S. Xu, and G. Y. Li, “Fundamental trade-offs on green wireless networks,” IEEE Commun. Mag., vol. 49, no. 6, pp. 30–37, Jun. 2011.
  10. [10] H. Bogucka and A. Conti, “Degrees of freedom for energy savings in practical adaptive wireless systems,” IEEE Commun. Mag., vol. 49, no. 6, pp. 38–45, Jun. 2011.
  11. [11] S. Mclaughlin, P. M. Grant, J. S. Thompson, and H. Haas, “Techniques for improving cellular radio base station energy efficiency,” IEEE Wireless Commun., vol. 18, no. 5, pp. 10–17, Oct. 2011.
  12. [12] M. Ismail and W. Zhuang, “Network cooperation for energy saving in green radio communications,” IEEE Wireless Commun., vol. 18, no. 5, pp. 76–81, Oct. 2011.
  13. [13] GeSI/The Climate Group, SMART 2020: Enabling the Low Carbon Economy in the Information Age, Global e-Sustainability Initiative, Brussels, 2008.
  14. [14] L. Suarez, L. Nuaymi, and J. M. Bonnin, “An overview and classification of research approaches in green wireless networks,” EURASIP J. Wireless Commun. Networking, vol. 142, pp. 1–18, April 2012.
  15. [15] K. Pentikousis, “In search of energy-efficient mobile networking,” IEEE Commun. Mag., vol. 48, no. 1, pp. 95–103, Jan. 2010.
  16. [16] G. Miao, “Energy-efficient uplink multi-user MIMO,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 2302–2313, May 2013.
  17. [17] E. Oh, B. Krishnamachari, X. Liu, and Z. Niu, “Toward dynamic energy-efficient operation of cellular network infrastructure,” IEEE Commun. Mag., vol. 49, no. 6, pp. 56–61, Jun. 2011.
  18. [18] Y. S. Soh, T. Q. S. Quek, M. Kountouris, and H. Shin, “Energy efficient heterogeneous cellular networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 5, pp. 840–850, May 2013.
  19. [19] I. Humar, X. Ge, L. Xiang, M. Jo, M. Chen, and J. Zhang, “Rethinking energy efficiency models of cellular networks with embodied energy,” IEEE Network, vol. 25, no. 2, pp. 40–49, April 2011.
  20. [20] D. Feng, C. Jiang, G. Lim, L. J. Cimini, G. Feng, and G. Y. Li, “A survey of energy-efficient wireless communications,” IEEE Commun. Surv. Tutorials, vol. 15, no. 1, pp. 167–178, Feb. 2013.
  21. [21] S. Tombaz, A. Vastberg, and J. Zander, “Energy- and cost-efficient ultra-high-capacity wireless access,” IEEE Wireless Commun., vol. 18, no. 5, pp. 18–24, Oct. 2011.
  22. [22] L. M. Correia, D. Zeller, O. Blume, and D. Ferling, “Challenges and enabling technologies for energy aware mobile radio networks,” IEEE Commun. Mag., vol. 48, no. 11, pp. 66–72, Nov. 2010.
  23. [23] X. Ma, M. Sheng, J. Li, and Q. Yang, “Concurrent transmission for energy efficiency of user equipment in 5G wireless communication networks,” Science China. Information Sciences, vol. 59, no. 2, pp 1–15, Feb. 2016
  24. [24] G. Miao, N. Himayat, Y. Li, and A. Swami, “Cross-layer optimization for energy-efficient wireless communications: a survey,” Wiley J. Wireless Commun. Mobile Comput., vol. 9, pp. 529–542, March 2009.
  25. [25] M. Ismail, W. Zhuang, and S. Elhedhli, “Energy and content aware multi-homing video transmission in heterogeneous networks,” IEEE Trans. Wireless Commun., vol. 12, no. 7, pp. 3600–3610, July 2013.
  26. [26] S. Bu, F. R. Yu, Y. Cai, and X. P. Liu, “When the smart grid meets energy-efficient communications: green wireless cellular networks powered by the smart grid,” IEEE Trans. Wireless Commun., vol. 11, no. 8, pp. 3014–3024, Aug. 2012.
  27. [27] M. Ismail, W. Zhuang, E. Serpedin, and K. Qaraqe, “A survey on green mobile networking: from the perspectives of network operators and mobile users,” IEEE Commun. Surv. Tutorials, vol. 17, no. 3, pp. 1535–1556, Nov. 2014.
  28. [28] G. Miao, N. Himayat, G. Y. Li, and S. Talwar, “Low-complexity energy-efficient scheduling for uplink OFDMA,” IEEE Trans. Commun., vol. 60, no. 1, pp. 112–120, Jan. 2012.
  29. [29] S. G. Colavolpe, D. Saturnino, and A. Zapone, “Potential games for energy-efficient power control and subcarrier allocation in uplink multicell OFDMA systems,” IEEE J. Sel. Areas Signal Process., vol. 6, no. 2, pp. 89–103, April 2012.
  30. [30] O. Onireti, F. Heliot, and M. A. Imran, “On the energy efficiency-spectral efficiency trade-off in the uplink of CoMP system,” IEEE Trans. Wireless Commun., vol. 11, no. 2, pp. 556–561, Feb. 2012.
  31. [31] O. Galinina, S. Andreev, A. Turlikov, and Y. Koucheryavy, “Optimizing energy efficiency of a multi-radio mobile device in heterogeneous beyond-4G networks,” Perform. Eval., vol. 78, pp. 18–41, Jun. 2014.
  32. [32] K. Ying, H. Yu, and H. Luo, “Inter-RAT energy saving for multicast services,” IEEE Commun. Lett., vol. 17, no. 5, pp. 900–903, May 2013.
  33. [33] X. Ma, M. Sheng, and Y. Zhang, “Green communications with network cooperation: a concurrent transmission approach,” IEEE Commun. Lett., vol. 16, no. 12, pp. 1952–1955, Dec. 2012.
  34. [34] Z. Niu, Y. Wu, J. Gong, and Z. Yang, “Cell zooming for cost-efficient green cellular networks,” IEEE Commun. Mag., vol. 48, no. 11, pp. 74–79, Nov. 2010.
  35. [35] K. Son, H. Kim, Y. Yi, and B. Krishnamachari, “Base station operation and user association mechanisms for energy-delay tradeoffs in green cellular networks,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1525–1536, Sept. 2011.
  36. [36] X. Zhang and P. Wang, “Optimal trade-off between power saving and QoS provisioning for multicell cooperation networks,” IEEE Wireless Commun., vol. 20, no. 1, pp. 90–96, Feb. 2013.
  37. [37] T. Han and N. Ansari, “On optimizing green energy utilization for cellular networks with hybrid energy supplies,” IEEE Trans. Wireless Commun., vol. 12, no. 8, pp. 3872–3882, May 2013.
  38. [38] Z. Niu, “TANGO: traffic-aware network planning and green operation,” IEEE Wireless Commun., vol. 18, no. 5, pp. 25–29, Oct. 2011.
  39. [39] G. Auer, V. Giannini, C. Desset, and I. Godor, “How much energy is needed to run a wireless network?” IEEE Wireless Commun., vol. 18, no. 5, pp. 40–49, Oct. 2011.
  40. [40] A. da Silva, M. Meo, and M. Marsan, “Energy-performance trade-off in dense WLANs: a queuing study,” Comput. Networks, vol. 56, pp. 2522–2537, March 2012.
  41. [41] L. B. Le, D. Niyato, E. Hossain, D. I. Kim, and D. T. Hoang, “QoS-aware and energy-efficient resource management in OFDMA femtocells,” IEEE Trans. Wireless Commun., vol. 12, no. 1, pp. 180–194, Jan. 2013.
  42. [42] F. Liu, K. Zheng, W. Xiang, and H. Zhao, “Design and performance analysis of an energy-efficient uplink carrier aggregation scheme,” IEEE J. Sel. Areas Commun., vol. 32, no. 2, pp. 197–207, May 2013.
  43. [43] N. Mastronarde and M. van der Schaar, “Fast reinforcement learning for energy-efficient wireless communication,” IEEE Trans. Signal Process., vol. 59, no. 12, pp. 6262–6267, Dec. 2011.
  44. [44] H. Kwon and B. G. Lee, “Energy-efficient scheduling with delay constraints in time-varying uplink channels,” J. Commun. Networks, vol. 10, no. 1, pp. 28–37, March 2008.
  45. [45] G. Miao, N. Himayat, and G. Y. Li, “Energy-efficient link adaptation in frequency-selective channels,” IEEE J. Sel. Areas Commun., vol. 58, no. 2, pp. 545–554, Feb. 2010.
  46. [46] C. Y. Ho and C. Y. Huang, “Non-cooperative multi-cell resource allocation and modulation adaptation for maximizing energy efficiency in uplink OFDMA cellular networks,” IEEE Wireless Commun. Lett., vol. 1, no. 5, pp. 420–423, Oct. 2012.
  47. [47] M. Deruyck, D. D. Vulder, W. Joseph, and L. Martens, “Modelling the power consumption in femtocell networks,” WCNC'12 Workshop on Future Green Communications, pp. 30–35, April 2012.
  48. [48] R. Riggio and D. J. Leith, “A measurement-based model of energy consumption in femtocells,” Wireless Days 2012 IFIP, pp. 1–5, Nov. 2012.
  49. [49] A. De Domenico, E. C. Strinati, and A. Capone, “Enabling green cellular networks: a survey and outlook,” Comput. Commun., vol. 37, pp. 5–24, Oct. 2013.
  50. [50] F. Meshkati, H. V. Poor, and S. C. Schwartz, “Energy-efficient resource allocation in wireless networks,” IEEE Signal Process. Mag., vol. 24, no. 3, pp. 58–86, May 2007.
  51. [51] C. Isheden and G. P. Fettweis, “Energy-efficient multi-carrier link adaptation with sum rate-dependent circuit power,” Proceedings of IEEE GlobeCom'10, pp. 1–6, Dec. 2010.
  52. [52] Y. Rui, Q. T. Zhang, L. Deng, P. Cheng, and M. Li, “Mode selection and power optimization for energy efficiency in uplink virtual MIMO systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 5, pp. 926–936, May 2013.
  53. [53] G. Lim and L. J. Cimini, “Energy-efficient cooperative relaying in heterogeneous radio access networks,” IEEE Wireless Commun. Lett., vol. 1, no. 5, pp. 476–479, May 2013.
  54. [54] M. Ismail, A. T. Gamage, W. Zhuang, X. Shen, E. Serpedin, and K. Qaraqe, “Uplink decentralized joint bandwidth and power allocation for energy-efficient operation in a heterogeneous wireless medium,” IEEE Trans. Commun., vol. 63, no. 4, pp. 1483–1495, April 2015.
  55. [55] P. Monti, S. Tombaz, L. Wosinska, and J. Zander, “Mobile backhaul in heterogeneous network deployments: technology options and power consumption,” 14th International Conference on Transparent Optical Networks, pp. 1–7, July 2012.
  56. [56] D. Feng, C. Jiang, G. Lim, L. J. Cimini, G. Feng, and G. Y. Li, “A survey of energy-efficient wireless communications,” IEEE Commun. Surv. Tutorials, vol. 15, no. 1, pp. 167–178, Jan. 2013.
  57. [57] A. P. Azad, “Analysis and optimization of sleeping mode in WiMAX via stochastic decomposition techniques,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1630–1640, Sept. 2011.
  58. [58] X. Wang, A. V. Vasilakos, M. Chen, Y. Liu, and T. T. Kwon, “A survey of green mobile networks: opportunities and challenges,” Mobile Netw. Appl., vol. 17, no. 1, pp. 4–20, Jan. 2012.
  59. [59] R. Mahapatra, A. De Domenico, R. Gupta, and E. C. Strinati, “Green framework for future heterogeneous wireless networks,” Mobile Netw. Appl., vol. 57, pp. 1518–1528, Feb. 2013.
  60. [60] Energy Aware Radio and Network Technologies (EARTH), http://www.ict-earth.eu, Online accessed, Sept. 2012.
  61. [61] X. Lu, E. Erkip, Y. Wang, and D. Goodman, “Power efficient multimedia communication over wireless channels,” IEEE J. Sel. Areas Commun., vol. 21, no. 10, pp. 1738–1751, Dec. 2003.
  62. [62] T. H. Lan and A. H. Tewfik, “A resource management strategy in wireless multimedia communications-total power saving in mobile terminals with a guaranteed QoS,” IEEE Trans. Multimedia, vol. 5, no. 2, pp. 267–281, Jun. 2003.
  63. [63] T. Han and N. Ansari, “On greening cellular networks via multicell cooperation,” IEEE Wireless Commun., vol. 20, no. 1, pp. 82–89, Feb. 2013.
  64. [64] E. Oh, K. Son, and B. Krishnamachari, “Dynamic base station switching-on/off strategies for green cellular networks,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 2126–2136, May 2013.
  65. [65] C. Y. Chang, W. Liao, H. Y. Hsieh, and D. S. Shiu, “On optimal cell activation for coverage preservation in green cellular networks,” IEEE Trans. Mob. Comput., vol. 13, no. 11, pp. 2580–2591, Mar. 2014.
  66. [66] N. Saxena, B. J. R. Sahu, and Y.S. Han, “Traffic-aware energy optimization in green LTE cellular systems,” IEEE Commun. Lett., vol. 18, no. 1, pp. 38–41, Jan. 2014.
  67. [67] J. Wu, S. Zhou, and Z. Niu, “Traffic-aware base station sleeping control and power matching for energy-delay tradeoffs in green cellular networks,” IEEE Trans. Wireless Commun., vol. 12, no. 8, pp. 4196–4209, Aug. 2013.
  68. [68] S. Navaratnarajah, A. Saeed, M. Dianati, and M. A. Imran, “Energy efficiency in heterogeneous wireless access networks,” IEEE Wireless Commun., vol. 20, no. 5, pp. 37–43, Oct. 2013.
  69. [69] L. Saker, S. E. Alayoubi, R. Combes, and T. Chahed, “Optimal control of wake up mechanisms of femtocells in heterogeneous networks,” IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 664–672, April 2012.
  70. [70] A. Conte, A. Feki, L. Chiaraviglio, D. Ciullo, M. Meo, and M. A. Marsan, “Cell wilting and blossoming for energy efficiency,” IEEE Wireless Commun., vol. 18, no. 5, pp. 50–57, Oct. 2011.
  71. [71] A. P. Azad, S. Alouf, E. Altman, V. Borkar, and G. S. Paschos, “Optimal control of sleep periods for wireless terminals,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1605–1617, Sept. 2011.
  72. [72] A. Agarwal and A. K. Jagannatham, “Optimal wake-up scheduling for PSM delay minimization in mobile wireless networks,” IEEE Wireless Commun. Lett., vol. 2, no. 4, pp. 419–422, May 2013.
  73. [73] R. Wang, J. Tsai, C. Maciocco, T. Y. C. Tai, and J. Wu, “Reducing power consumption for mobile platforms via adaptive traffic coalescing,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1618–1629, Sept. 2011.
  74. [74] H. Yan, S. A. Watterson, D. K. Lowenthal, K. Li, R. Krishnan, and L. L. Peterson, “Client-centered, energy-efficient wireless communication on IEEE 802.11b networks,” IEEE Trans. Mob. Comput., vol. 5, no. 11, pp. 1575–1590, Nov. 2006.
  75. [75] H. Zhu and G. Cao, “On supporting power-efficient streaming applications in wireless environments,” IEEE Trans. Mob. Comput., vol. 4, no. 4, pp. 391–403, Aug. 2005.
  76. [76] Y. Jin, J. Xu, and L. Qiu, “Energy-efficient scheduling with individual packet delay constraints and non-ideal circuit power,” J. Commun. Networks, vol. 16, no. 1, pp. 36–44, Feb. 2014.
  77. [77] K. D. Turck, S. D. Vuyst, D. Fiems, S. Wittevrongel, and H. Bruneel, “Performance analysis of sleep mode mechanisms in the presence of bidirectional traffic,” Comput. Networks, vol. 56, pp. 2494–2505, March 2012.
  78. [78] L. Budzisz et al., “Dynamic resource provisioning for energy efficiency in wireless access networks: a survey and an outlook,” IEEE Commun. Surv. Tutorials, vol. 16, no. 4, pp. 2259–2285, Sept. 2014.
  79. [79] S. Videv, J. S. Thompson, H. Haas, and P. M. Grant, “Resource allocation for energy efficient cellular systems,” EURASIP J. Wireless Commun. Networking, vol. 181, pp. 1–15, May 2012.
  80. [80] Z. Ren, S. Chen, B. Hu, and W. Ma, “Energy-efficient resource allocation in downlink OFDM wireless systems with proportional rate constraints,” IEEE Trans. Veh. Technol., vol. 63, no. 5, pp. 2139–2150, Mar. 2014.
  81. [81] Y. L. Chung, “Rate-and-power control based energy-saving transmissions in OFDMA-based multicarrier base stations,” IEEE Syst. J., vol. 9, no. 2, pp. 578–584, April 2013.
  82. [82] L. Chen, Y. Yang, X. Chen, and G. Wei, “Energy-efficient link adaptation on Rayleigh fading channel for OSTBC MIMO system with imperfect CSIT,” IEEE Trans. Veh. Technol., vol. 62, no. 4, pp. 1577–1585, May 2013.
  83. [83] L. C. Wang, W. C. Liu, A. Chen, and K. N. Yen, “Joint rate and power adaptation for wireless local area networks in generalized Nakagami Fading Channels,” IEEE Trans. Veh. Technol., vol. 58, no. 3, pp. 1375–1386, March 2009.
  84. [84] L. P. Qian, Y. J. Zhang, Y. Wu, and J. Chen, “Joint base station association and power control via benders' decomposition,” IEEE Trans. Wireless Commun., vol. 12, no. 4, pp. 1651–1665, April 2013.
  85. [85] V. A. Siris and M. Anagnostopoulou, “Performance and energy efficiency of mobile data offloading with mobility prediction and prefetching,” Proceedings of IEEE WoWMoM'13, pp. 1–6, June 2013.
  86. [86] N. Ristanovic, J. Y. Le Boudec, A. Chaintreau, and V. Erramilli, “Energy efficient offloading of 3G networks,” Proceedings of IEEE MASS'11, pp. 202–211, Oct. 2011.
  87. [87] S. Tarkoma, M. Siekkinen, E. Lagerspetz, and Y. Xiao, Smartphone Energy Consumption: Modeling and Optimization, Cambridge University Press, 2014.
  88. [88] T. A. Le, S. Nasseri, A. Z. Esfahani, M. R. Nakhai, and A. Mills, “Power-efficient downlink transmission in multicell networks with limited wireless backhaul,” IEEE Wireless Commun., vol. 18, no. 5, pp. 82–88, Oct. 2011.
  89. [89] M. Z. Shakir, K. A. Qaraqe, H. Tabassum, M. S. Alouini, E. Serpedin, and M. A. Imran, “Green heterogeneous small-cell networks: toward reducing the b01-math-0001 emissions of mobile communications industry using uplink power adaptation,” IEEE Commun. Mag., vol. 51, no. 6, pp. 52–61, Jun. 2013.
  90. [90] T. Elkourdi and O. Simeone, “Femtocell as a relay: an outage analysis,” IEEE Trans. Wireless Commun., vol. 10, no. 12, pp. 4204–4213, Oct. 2011.
  91. [91] F. Parzysz, M. Vu, and F. Gagnon, “Impact of propagation environment on energy-efficient relay placement: model and performance analysis,” IEEE Trans. Wireless Commun., vol. 13, no. 4, pp. 2214–2228, April 2014.
  92. [92] Y. Li, X. Zhu, C. Liao, C. Wang, and B. Cao, “Energy efficiency maximization by jointly optimizing the positions and serving range of relay stations in cellular networks,” IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2551–2560, July 2014.
  93. [93] M. F. Uddin, C. Assi, and A. Ghrayeb, “Joint relay assignment and power allocation for multicast cooperative networks,” IEEE Commun. Lett., vol. 16, no. 3, pp. 368–371, March 2012.
  94. [94] K. Cheung, S. Yang, and L. Hanzo, “Achieving maximum energy-efficiency in multi-relay OFDMA cellular networks: a fractional programming approach,” IEEE Trans. Commun., vol. 61, no. 7, pp. 2746–2757, July 2013.
  95. [95] R. A. Loodaricheh, S. Mallick, and V. K. Bhargava, “Energy-efficient resource allocation for OFDMA cellular networks with user cooperation and QoS provisioning,” IEEE Trans. Wireless Commun., vol. 13, no. 11, pp. 6132–6146, Nov. 2014.
  96. [96] Y. Li, C. Liao, and C. Wang, “Energy-efficient optimal relay selection in cooperative cellular networks based on double auction,” IEEE Trans. Wireless Commun., vol. 14, no. 8, pp. 4093–4014, March 2015.
  97. [97] G. Zhang, “Subcarrier and bit allocation for real-time services in multiuser OFDM systems,” Proceedings of IEEE ICC04, pp. 2985–2989, June 2004.
  98. [98] G. Youjun, T. Hui, Z. Ping, and X. Haibo, “A QoS-Guaranteed adaptive resource allocation algorithm with low complexity in OFDMA system,” Proceedings of International Conference on Wireless Communications Networking and Mobile Computing, pp. 1–4, Sept. 2006.
  99. [99] M. Jung, K. Hwang, and S. Choi, “Joint mode selection and power allocation scheme for power-efficient Device-to-Device (D2D) communication,” Proceedings of the IEEE VTC-Spring '12, pp. 1–5, May 2012.
  100. [100] M. Belleschi, G. Fodor, and A. Abrardo, “Performance analysis of a distributed resource allocation scheme for D2D communications,” Proceedings of IEEE GLOBECOM Workshops, pp. 358–362, Dec. 2011.
  101. [101] M. R. Gary and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.
  102. [102] X. Xiao, X. Tao, and J. Lu, “A QoS-aware power optimization scheme in OFDMA systems with integrated Device-to-Device (D2D) communications,” Proceedings of IEEE VTC-Fall'11, pp. 1–5, Sept. 2011.
  103. [103] G. Fodor et al., “Design aspects of network assisted device-to-device communications,” EEE Commun. Mag., vol. 50, no. 3, pp. 170–177, March 2012.
  104. [104] A. Asadi and V. Mancuso, “Energy efficient opportunistic uplink packet forwarding in hybrid wireless networks,” Proceedings of the 4th International Conference on Future Energy Systems, pp. 261–262, 2013.
  105. [105] H. Ghazzai, E. Yaacoub, M. S. Alouini, and A. A. Dayya, “Optimized smart grid energy procurement for LTE networks using evolutionary algorithms,” IEEE Trans. Veh. Technol., vol. 63, no. 9, pp. 4508–4519, March 2014.
  106. [106] C. McGuire, M. R. Brew, F. Darbari, G. Bolton, A. McMahon, D. H. Crawford, S. Weiss, and R. W. Stewart, “HopScotch-a low-power renewable energy base station network for rural broadband access,” EURASIP J. Wireless Commun. Networking, vol. 112, pp. 1–12, March 2012.
  107. [107] T. Han and N. Ansari, “Powering mobile networks with green energy,” IEEE Wireless Commun., vol. 21, no. 1, pp. 90–96, Feb. 2014.
  108. [108] B. Devillers and D. Gunduz, “A general framework for the optimization of energy harvesting communication systems with battery imperfections,” J. Commun. Networks, vol. 14, no. 2, pp. 130–139, April 2012.
  109. [109] O. Orhan, D. Gunduz, and E. Erkip, “Throughput maximization for an energy harvesting communication system with processing cost,” Proceedings of IEEE Information Theory Workshop, pp. 84–88, Sept. 2012.
  110. [110] K. Tutuncuoglu and A. Yener, “Optimum transmission policies for battery limited energy harvesting nodes,” IEEE Trans. Wireless Commun., vol. 11, no. 3, pp. 1180–1189, Feb. 2012.
  111. [111] D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient resource allocation in OFDMA systems with hybrid energy harvesting base station,” IEEE Trans. Wireless Commun., vol. 12, no. 7, pp. 3412–3427, July 2013.
  112. [112] K. Tutuncuoglu and A. Yener, “Sum-rate optimal power policies for energy harvesting transmitters in an interference channel,” J. Commun. Networks, vol. 14, no. 2, pp. 151–161, April 2012.
  113. [113] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with energy harvesting nodes in fading wireless channels: optimal policies,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732–1743, Sept. 2011.
  114. [114] B. Gurakan, O. Ozel, J. Yang, and S. Ulukus, “Energy cooperation in energy harvesting communications,” IEEE Trans. Commun., Available on: arXiv:1303.2636v1 [cs.IT] 11 March 2013.
  115. [115] C. F. Chiasserini and R. R. Rao, “Energy efficient battery management,” IEEE J. Sel. Areas Commun., vol. 19, no. 7, pp. 1235–1245, July 2001.
  116. [116] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communication in cellular networks,” IEEE Commun. Surv. Tutorials, vol. 16, no. 4, pp. 1801–1819, Sept. 2014.
  117. [117] https://s3-us-west-2.amazonaws.com/belllabs-microsite-greentouch/index.php@page=about-us.html.
  118. [118] https://www.ict-earth.eu/.
  119. [119] http://www.celtic-initiative.org/Projects/OPERA-Net, Online accessed, April 2016.
  120. [120] http://www.meti.go.jp/english/policy/GreenITInitiativeJapan.pdf, Online accessed, April 2016.
  121. [121] M. C. Erturk, S. Mukherjee, H. Ishii, and H. Arslan, “Distributions of transmit power and SINR in device-to-device networks,” IEEE Commun. Lett., vol. 17, no. 2, pp. 273–276, Feb. 2013.
  122. [122] B. Zhou, H. Hu, S.-Q. Huang, and H.-H. Chen, “Intracluster device-to-device relay algorithm with optimal resource utilization,” IEEE Trans. Veh. Technol., vol. 62, no. 5, pp. 2315–2326, Jun. 2013.
  123. [123] T. Kim and M. Dong, “An iterative hungarian method to joint relay selection and resource allocation for D2D communications,” IEEE Wireless Commun. Lett., vol. 3, no. 6, pp. 625–628, Dec. 2014.
  124. [124] H. Cai, I. Koprulu, and N. Shroff, “Exploiting double opportunities for deadline based content propagation in wireless networks,” Proceedings of IEEE INFOCOM'13, pp. 764–772, 2013.
  125. [125] N. Golrezaei, A. F. Molisch, and A. G. Dimakis, “Base-station assisted device-to-device communications for high-throughput wireless video networks,” Proceedings of IEEE ICC'12, pp. 7077–7081, 2012.
  126. [126] M. Ismail and W. Zhuang, “Green radio communications in a heterogeneous wireless medium,” IEEE Wireless Commun. Mag., vol. 21, no. 3, pp. 128–135, Jun. 2014.
  127. [127] M. F. Marzban, M. Ismail, M. Abdallah, M. Khairy, K. Qaraqe, and E. Serpedin, “IDC interference-aware resource allocation for LTE/WLAN heterogeneous networks,” IEEE Wireless Commun. Lett., vol. 4, no. 6, pp. 581–584, Aug. 2015.
  128. [128] 3GPP, “TR 36.816: Evolved Universal Terrestrial Radio Access (E-UTRA); Study on Signaling and Procedure for Interference Avoidance for in-Device Coexistence,” 2012.
  129. [129] Z. Hu, R. Susitaival, Z. Chen, I. Fu, P. Dayal, and S. Baghel, “Interference avoidance for in-device coexistence in 3GPP LTE-advanced: challenges and solutions,” IEEE Commun. Mag., vol. 50, no. 11, pp. 60–67, Nov. 2012.
  130. [130] J. Choi, J. Yoo, S. Choi, and C. Kim, “EBA: an enhancement of the IEEE 802.11 DCF via distributed reservation,” IEEE Trans. Mob. Comput., vol. 4, no. 4, pp. 378–390, Aug. 2005.
  131. [131] IEEE Std 802.11, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” 2012.
  132. [132] A. R. Ekti, X. Wang, M. Ismail, E. Serpedin, and K. Qaraqe, “Joint user association and data rate allocation in heterogeneous wireless networks,” IEEE Trans. Veh. Technol., IEEE Early Access since Nov. 2015.
  133. [133] M. Ismail, E. Serpedin, and K. Qaraqe, “A win-win cooperative downlink resource allocation for green communications in a heterogeneous wireless medium,” 2nd Workshop on Green Broadband Access - IEEE Globecom'14, Dec. 2014.
  134. [134] H. Lee, S. Vahid, and K. Moessner, “A survey of radio resource management for spectrum aggregation in LTE-advanced,” IEEE Wireless Commun. Surv. Tutorials, vol. 16, no. 2, pp. 745–760, May 2014.
  135. [135] M. B. Celebi, I. Guvenc, and H. Arslan, “Interference mitigation for LTE uplink through iterative blanking,” IEEE Globecom'11, pp. 1–6, Dec. 2011.
  136. [136] B. Gedik, O. Amin, and M. Uysal, “Power allocation for cooperative systems with training-aided channel estimation,” IEEE Trans. Wireless Commun., vol. 8, no. 9, pp. 4773–4783, Sept. 2009.
  137. [137] M. Ismail, K. Qaraqe, and E. Serpedin, “Cooperation incentives and downlink radio resource allocation for green communications in a heterogeneous wireless environment,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1627–1638, March 2015.
  138. [138] D. L. Perez, A. Valcarce, G. de la Roche, and J. Zhang, “OFDMA Femtocells: a roadmap on interference avoidance,” IEEE Commun. Mag., vol. 47, no. 9, pp. 41–48, Sept. 2009.
  139. [139] H. C. Lee, D. C. Oh, and Y. H. Lee, “Mitigation of interfemtocell interference with adaptive fractional frequency reuse,” Proceedings of IEEE ICC'10, pp. 1–5, May 2010.
  140. [140] A. Mahmud and K. A. Hamdi, “A unified framework for the analysis of fractional frequency reuse techniques,” IEEE Trans. Commun., vol. 62, no. 10, pp. 3692–3705, Oct. 2014.
  141. [141] V. Chandrasekhar and J. G. Andrews, “Spectrum allocation in tiered cellular networks,” IEEE Trans. Commun., vol. 57, no. 10, pp. 3059–3068, Oct. 2009.
  142. [142] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2009.
  143. [143] J. Nash, “The bargaining problem,” Econometrica, vol. 18, no. 2, pp. 155–162, April 1950.
  144. [144] H. Boche, M. Schubert, N. Vucic, and S. Naik, “Non-symmetric nash bargaining solution for resource allocation in wireless networks and connection to interference calculus,” Proceedings of the 15th European Signal Processing Conference, 2007.
  145. [145] H. Yaiche, R. R. Mazumdar, and C. Rosenberg, “A game theoretic framework for bandwidth allocation and pricing in broadband networks,” IEEE/ACM Trans. Networking, vol. 8, no. 5, pp. 667–678, Oct. 2000.
  146. [146] C. Liu, X. Qin, S. Zhang, and W. Zhou, “Proportional-fair downlink resource allocation in OFDMA-based relay networks,” J. Commun. Networks, vol. 13, no. 6, pp. 633–638, Dec. 2011.
  147. [147] C. Xiong, G. Y. Li, S. Zhang, Y. Chen, and S. Xu, “Energy- and spectral-efficiency tradeoff in downlink OFDMA networks,” IEEE Trans. Wireless Commun., vol. 10, no. 11, pp. 3874–3886, Nov. 2011.
  148. [148] C. Xiong, G. Y. Li, S. Zhang, Y. Chen, and S. Xu, “Energy-efficient resource allocation in OFDMA networks,” IEEE Trans. Commun., vol. 60, no. 12, pp. 3767–3778, Dec. 2012.
  149. [149] D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas,” IEEE Trans. Wireless Commun., vol. 11, no. 9, pp. 3292–3304, Sept. 2012.
  150. [150] T. S. Chang, K. T. Feng, J. S. Lin, and L. C. Wang, “Green resource allocation schemes for relay-enhanced MIMO-OFDM networks,” IEEE Trans. Veh. Technol., vol. 62, no. 9, pp. 4539–4554, Nov. 2013.
  151. [151] W. C. Chung, C. J. Chang, and C. Y. Huang, “A green radio resource allocation scheme for LTE-A CoMP systems with multimedia traffic,” Proceedings of IEEE/CIC ICCC'13, pp. 758–762, Aug. 2013.
  152. [152] O. Arnold, F. Richter, G. Fettweis, and O. Blume, “Power consumption modeling of different base station types in heterogeneous cellular networks,” Proceedings of ICT-MobileSummit, June 2010.
  153. [153] S. Kim, B. G. Lee, and D. Park, “Radio resource allocation for energy consumption minimization in multi-homed wireless networks,” Proceedings of IEEE ICC13, pp. 5589–5594, June 2013.
  154. [154] M. Ismail, A. T. Gamage, W. Zhuang, and X. Shen, “Energy efficient uplink resource allocation in a heterogeneous wireless medium,” Proceedings of IEEE ICC 2014, pp. 5275–5280, June 2014.
  155. [155] L. Golubchik, J. C. S. Lui, T. F. Tung, A. L. H. Chow, W. J. Lee, G. Franceschinis, and C. Anglano, “Multi-path continuous media streaming: what are the benefits?” Perform. Eval., vol. 49, no. 1, pp. 429–449, Sept. 2002.
  156. [156] M. D. Trott, “Path diversity for enhanced media streaming,” IEEE Commun. Mag., vol. 42, no. 8, pp. 80–87, Aug. 2004.
  157. [157] G. P. Perrucci, F. H.P. Fitzek, and J. Widmer, “Survey on energy consumption entities on the smartphone platform,” Proceedings of IEEE VTC 2011, pp. 1–6, May 2011.
  158. [158] L. Lei, Z. Zhong, C. Lin, and X. Shen, “Operator controlled device-to-device communications in LTE-advanced networks,” IEEE Wireless Commun., vol. 19, no. 3, pp. 96–104, Jun. 2012.
  159. [159] E. Rantalai, A. Karppanen, S. Granlund, and P. Sarolahti, “Modeling energy efficiency in wireless internet communication,” Proceedings of MobiHeld '09. ACM, pp. 67–72, Aug. 2009.
  160. [160] R. Litjens, H. van den Berg, and R. J. Boucherie, “Throughputs in processor sharing models for integrated stream and elastic traffic,” Proceedings of MobiHeld '09. ACM, vol. 65, no. 2, pp. 152–180, Feb. 2008.
  161. [161] M. Ismail and W. Zhuang, “Mobile terminal energy management for sustainable multi-homing video transmission,” IEEE Trans. Wireless Commun., vol. 13, no. 8, pp. 4616–4626, Aug. 2014.
  162. [162] N. Abu-Ali, A. M. Taha, M. Salah, and H. Hassanein, “Uplink scheduling in LTE and LTE-advanced: tutorial, survey, and evaluation framework,” IEEE Wireless Commun. Surv. Tutorials, vol. 16, no. 3, pp. 1239–1265, Aug. 2014.
  163. [163] F. Liu, K. Zheng, W. Xiang, and H. Zhao, “Design and performance analysis of an uplink carrier aggregation scheme,” IEEE J. Sel. Top. Signal Process., vol. 32, no. 2, pp. 197–207, Feb. 2014.
  164. [164] J. B. G. Frenk and S. Schaible, “Fractional programming,” ERIM Report Series Research in Management, ERS-2004074-LIS, p. 55, 2004.
  165. [165] J. P. G. Crouzeix and J. A. Ferland, “Algorithms for generalized fractional programming,” Math. Program., vol. 52, no. 13, pp. 191–207, May. 1991.
  166. [166] Technical Specification, “LTE; Evolved universal terrestrial radio access (E-UTRA); User equipment (UE) radio transmission and reception - (3GPP TS 36.101 version 10.3.0 Release 10),” June 2011.
  167. [167] Technical Specification, “Universal Mobile Telecommunications System (UMTS); User Equipment (UE) radio transmission and reception (FDD) - (3GPP TS 25.101 version 6.19.0 Release 6),” March 2009.
  168. [168] K. Pandit, A. Ghosh, D. Ghosal, and M. Chiang, “Content aware optimization for video delivery over WCDMA,” EURASIP J. Wireless Commun. Networking, vol. 2012, no. 1, p. 217, July 2012.
  169. [169] J. Chakareski, S. Han, and B. Girod, “Layered coding vs. multiple description for video streaming over multiple paths,” Proceedings of ACM International Conference on Multimedia, pp. 422–431, 2003.
  170. [170] F. Fu and M. van der Schaar, “Structural solutions for dynamic scheduling in wireless multimedia transmission,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 5, pp. 727–739, May 2012.
  171. [171] D. Jurca and P. Frossard, “Video packet selection and scheduling for multipath streaming,” IEEE Trans. Multimedia, vol. 9, no. 3, pp. 629–641, April 2007.
  172. [172] D. Fiems, B. Steyaert, and H. Bruneel, “A genetic approach to Markovian characterisation of H.264 scalable video,” Multimedia Tools Appl., vol. 58, no. 1, pp. 125–146, May 2012.
  173. [173] M. van der Schaar and D. Turaga, “Cross-layer packetization and retransmission strategies for delay-sensitive wireless multimedia transmission,” IEEE Trans. Multimedia, vol. 9, no. 1, pp. 185–197, Jan. 2007.
  174. [174] Y. Zhang, F. Fu, and M. van der Schaar, “On-line learning and optimization for wireless video transmission,” IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3108–3124, Jun. 2010.
  175. [175] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems, Springer-Verlag, 2004.
  176. [176] S. Martello and P. Toth, “Heuristic algorithms for the multiple knapsack problem,” Computing, vol. 27, no. 2, pp. 93–112, 1981.
  177. [177] K. F. Man, K. S. Tang, and S. Kwong, “Genetic algorithms: concepts and applications,” IEEE Trans. Ind. Electron., vol. 43, no. 5, pp. 519–534, Oct. 1996.
  178. [178] M. V. Bhalerao, S. S. Sonavane, and V. Kumar, “A survey of wireless communications using visible light,” International Journal of Advances in Engineering & Technology, pp. 1–10, Jan. 2013.
  179. [179] D. Gujjari, “Visible light communication,” MSc. Thesis, Dalhousie University, Aug. 2012.
  180. [180] R. Zhang, J. Wang, Z. Wang, Z. Y. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun., vol. 22, no. 2, pp. 8–16, April 2015.
  181. [181] M. Saadi, L. Wattisuttikulkij, Y. Zhao, and P. Sangwongngam, “Visible light communication: opportunities, challenges, and channel models,” Int. J. Electron. Inf., vol. 2, no. 1, pp. 1–11, Feb. 2013.
  182. [182] S. Shao, A. Khreishah, M. B. Rahaim, and H. Elgala, “An indoor hybrid WiFi-VLC internet access system,” Proceedings of the IEEE 11th International Conference on Mobile Adhoc and Sensor Systems, pp. 569–574, 2014.
  183. [183] M. Kashef, M. Ismail, M. Abdallah, K. Qaraqe, and E. Serpedin, “Energy efficient resource allocation for mixed RF/VLC heterogeneous wireless networks,” IEEE J. Sel. Areas Commun., IEEE Early Access with date: March 2016.
  184. [184] S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag., vol. 50, no. 3, pp. 72–82, March 2012.
  185. [185] I. Stefan and H. Haas, “Hybrid visible light and radio frequency communication systems,” IEEE VTC, Fall14, pp. 1–5, Sept. 2014.
  186. [186] J. H. Liu, Q. Li, and X. Y. Zhang, “Cellular coverage optimization for indoor visible light communication and illumination networks,” J. Commun., vol. 9, no. 11, pp. 891–898, Nov. 2014.
  187. [187] C. Chen, D. Tsonev, and H. Haas, “Joint transmission in indoor visible light communication downlink cellular networks,” Proceedings of IEEE Globecom Workshop, pp. 1127–1132, Dec. 2013.
  188. [188] X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and WiFi,” IEEE Trans. Commun., vol. 63, no. 4, pp. 1319–1329, April 2015.
  189. [189] H. Chowdhury, I. Ashraf, and M. Katz, “Energy-efficient connectivity in hybrid radio-optical wireless systems,” Proceedings of the 10th International Symposium on Wireless Communications Systems, pp. 1–5, Aug. 2013.
  190. [190] D. A. Basnayaka and H. Haas, “Hybrid RF and VLC systems: improving user data rate performance of VLC systems,” Proceedings of IEEE VTC, Spring, to appear.
  191. [191] F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay-guarantee constraints for heterogeneous visible light and RF femtocell,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 1020–1034, Feb. 2015.
  192. [192] D. Bykhovsky and S. Arnon, “Multiple access resource allocation in visible light communication systems,” J. Lightwave Technol., vol. 32, no. 8, pp. 1594–1600, March 2014.
  193. [193] M. Kashef, M. Abdallah, K. Qaraqe, H. Haas, and M. Uysal, “On the benefits of cooperation via power control in OFDM-based visible light communication systems,” IEEE PIMRC, 2014.
  194. [194] I. Stefan and H. Haas, “Analysis of optimal placement of LED arrays for visible light communication,” 2013 IEEE VTC, Spring, pp. 1–5, 2–5 June 2013.
  195. [195] L. Saker, S.-E. Elayoubi, and T. Chahed, “Minimizing energy consumption via sleep mode in green base station,” Proceedings of IEEE WCNC, pp. 1–6, April 2010.
  196. [196] H. Y. Lateef, M. Z. Shakir, M. Ismail, A. Mohamed, and K. Qaraqe, “Towards energy efficient and quality of service aware cell zooming in 5G wireless networks,” Proceedings of IEEE VTC, to appear.
  197. [197] M. Ismail, M. Kashef, E. Serpedin, and K. Qaraqe, “On balancing energy efficiency for network operators and mobile users in dynamic planning,” IEEE Commun. Mag., vol. 53, no. 11, pp. 158–165, Nov. 2015.
  198. [198] M. Ismail, M. Kashef, E. Serpedin, and K. Qaraqe, “Dynamic planning with balanced energy efficiency for network operators and mobile users,” IEEE OnlineGreenComm, pp. 1–6, Nov. 2014.
  199. [199] X. Li, H. Wang, N. Liu, and X. You, “Dynamic user association for energy minimization in macro-relay network,” Proceedings of IEEE WCSP, pp. 1–5, 2012.
  200. [200] X. Li, H. Wang, C. Meng, X. Wang, and N. Liu, “Total energy minimization through dynamic station-user connection in macro-relay network,” Proceedings of IEEE WCNC, pp. 697–702, 2013.
  201. [201] R. Fantini, D. Sabella, and M. Caretti, “Energy efficiency in LTEAdvanced networks with relay nodes,” Proceedings of IEEE VTC, pp. 1–5, 2011.
  202. [202] I. Stefan, H. Burchardt, and H. Haas, “Area spectral efficiency performance comparison between VLC and RF femtocell networks,” IEEE ICC'13, pp. 3825–3829, June 2013.
  203. [203] V. Goswami and U. C. Gupta, “Analyzing the discrete-time multiserver queue Geom/Geom/m queue with late and early arrivals,” Inf. Manage. Sci., vol. 9, no. 2, pp. 55–66, Jun. 1998.
  204. [204] Y. Chen, S. Zhang, and S. Xu, “Characterizing energy efficiency and deployment efficiency relations for green architecture design,” Proceedings of IEEE International Conference on Communications, (ICC'2010), pp. 1–5, June 2010.
  205. [205] 3rd Generation Partnership Project (3GPP)–Technical Specification Group Services and System Aspects (TSG SA) Telecommunication Management, “Study on energy savings management (ESM) (Release 10),” 3GPP Technical Report TR 32.826 V10.0.0 (2010–03), 3GPP, France, pp. 1–33, Mar. 2010.
  206. [206] L. M. Correia, D. Zeller, O. Blume, et al., “Challenges and enabling technologies for energy aware mobile radio networks,” IEEE Commun. Mag., vol. 48, no. 11, pp. 66–72, Nov. 2010.
  207. [207] X. Wang, A. V. Vasilakos, M. Chen, Y. Liu, and T. T. Kwon, “A survey of green mobile networks: opportunities and challenges,” Springer J. Mob. Networks Appl., vol. 17, no. 1, pp. 4–20, 2012.
  208. [208] P. Lin, J. Zhang, Y. Chen, and Q. Zhang, “Macro-femto heterogeneous network deployment and management: from business models to technical solutions,” IEEE Wireless Commun. Mag., vol. 18. no. 3, pp. 64–70, Jun. 2011.
  209. [209] S. Landstrom, A. Furuskar, K. Johansson, L. Falconetti, and F. Kronestedt, “Heterogeneous networks increasing cellular capacity,” J. Ericson Rev., vol. 89, pp. 4–9, Jan. 2011.
  210. [210] N. Shetty, S. Parekh, and J. Walrand, “Economics of femtocells,” Proceedings of IEEE Conference on Global Communications, (GLOBECOM'09), pp. 1–5, Dec. 2009.
  211. [211] H. Claussen, L. T. W. Ho, and L. G. Samuel, “An overview of the femtocell concept,” Bell Labs Tech. J., vol. 13, no. 1, pp. 221–245, May 2008.
  212. [212] V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks: a survey,” IEEE Commun. Mag., vol. 46, no. 9, pp. 59–67, Sept. 2008.
  213. [213] I. Guvenc, “Capacity and fairness analysis of heterogeneous networks with range expansion and interference coordination,” IEEE Commun. Lett., vol. 15, no. 10, pp. 1084–1087, Oct. 2011.
  214. [214] M. C. Erturk, I. Guvenc, S. Mukherjee, and H. Arslan, “Fair and QoS-oriented resource management in heterogeneous networks,” EURASIP J. Wireless Commun. Networking, vol. 2013, no. 1, p. 121, May 2013.
  215. [215] D. Calin, H. Claussen, and H. Uzunalioglu, “On femto deployment architectures and macrocell offloading benefits in joint macro-femto deployments,” IEEE Commun. Mag., vol. 48, no. 1, pp. 26–32, Jan. 010.
  216. [216] M. Bennis, D. Niyato, and T. Alpcan, Distributed Learning Strategies for Femtocell Networks, Femtocell Networks: Deployment, PHY techniques, and Resource Management, Cambridge Press, UK, Apr. 2013.
  217. [217] J. Hoydis, M. Kobayashi, and M. Debbah, “Green small-cell networks,” IEEE Mag. Veh. Technol., vol. 6, no. 1, pp. 37–43, Mar. 2011.
  218. [218] F. Richter, A. J. Fehske, and G. P. Fettweis, “Energy efficiency aspects of base station deployment strategies for cellular networks,” IEEE 70th Vehicular Technology Conference, (VTC-Fall'2009), pp. 1–5, Sep. 2009.
  219. [219] A. J. Fehske, F. Richter, and G. P. Fettweis, “Energy efficiency improvements through micro sites in cellular mobile radio networks,” Proceedings of IEEE Conference on Global Communications Workshops, (GLOBECOM'2009), pp. 1–5, Dec. 2009.
  220. [220] H. Claussen, L. T. W. Ho, and F. Pivit, “Effects of joint macrocell and residential picocell deployment on the network energy efficiency,” Proceedings of IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, (PIMRC'2008), pp. 1–6, Sept. 2008.
  221. [221] A. R. Ekti, M. Z. Shakir, E. Serpedin, and K. A. Qaraqe, “Characterizing energy efficiency and deployment efficiency relations for green architecture design,” Proceedings of IEEE International Conference on Communications, (ICC'2010), pp. 1–5, Cape Town, South Africa, June 2010.
  222. [222] M.-S. Alouini and A. Goldsmith, “Area spectral efficiency of cellular mobile radio systems,” IEEE Trans. Veh. Technol., vol. 48, no. 4, pp. 1047–1066, July 1999.
  223. [223] S. R. Saunders and A. A. Zavala, Antenna and Propagation for Wireless Communication Systems, 2nd ed., John Wiley & Sons, Ltd., Chicester, UK, Mar. 2007.
  224. [224] P. Harley, “Short distance attenuation measurements at 900 MHz and 1.8 GHz using low antenna heights for microcells,” IEEE. J. Sel. Areas Commun., vol. SAC-7, pp. 5–11, Jan. 1989.
  225. [225] 3rd Generation Partnership Project (3GPP)–Technical Specification Group Radio Access Network (TSG RAN) Radio Layer 1, “Physical layer aspects for evolved universal terrestrial radio access (UTRA) (Release 9),” 3GPP Technical Report TR 25.814 V7.1.0 (2006–09), pp. 1–132, Oct. 2006.
  226. [226] A. Simonsson and A. Furuskar, “Uplink power control in LTE -overview and performance, subtitle: principles and benefits of utilizing rather than compensating for SINR variations,” Proceedings of IEEE 68th Vehicular Technology Conference, (VTC-Fall'2008), pp. 1–5, Calgary, AB, Canada, Sept. 2008.
  227. [227] B. Muhammad and A. Mohammed, “Performance evaluation of uplink closed loop power control for LTE system,” Proceedings of IEEE 70th Vehicular Technology Conference, (VTC-Fall'2009), pp. 1–5, Anchorage, AK, USA, Sept. 2009.
  228. [228] A. M. Rao, “Reverse link power control for managing inter-cell interference in orthogonal multiple access systems,” Proceedings of IEEE 66th Vehicular Technology Conference, (VTC-Fall'2007), pp. 1–5, Baltimore, MD, USA, Oct. 2007.
  229. [229] S. Al-Ahmadi and H. Yanikomeroglu, “On the approximation of the generalized-K PDF by a Gamma PDF using the moment matching method,” Proceedings of IEEE Conference on Wireless Communications and Networking, (WCNC'09), pp. 1–6, Budapest, Hungary, April 2009.
  230. [230] R. K. Mallik, “A new statistical model of the complex Nakagami-m fading gain,” IEEE Trans. Commun., vol. 58, no. 9, pp. 2611–2620, 2010.
  231. [231] P. Bithas, N. Sagias, P. Mathiopoulos, G. Karagiannidis, and A. Rontogiannis, “On the performance analysis of digital communications over generalized-K fading channels,” IEEE Commun. Lett., vol. 5, no. 10, pp. 353–355, May 2006.
  232. [232] Y. Kim, T. Kwon, and D. Hong, “Area spectral efficiency of shared spectrum hierarchical cell structure networks,” IEEE Trans. Veh. Technol., vol. 59, no. 8, pp. 4145–4151, 2010.
  233. [233] K. A. Hamdi, “A useful lemma for capacity analysis of fading interference channels,” IEEE Trans. Commun., vol. 58, no. 2, pp. 411–416, Feb. 2010.
  234. [234] T. Persson, C. Trnevik, L.-E. Larsson, and J. Lovn, “Output power distributions of terminals in a 3G mobile communication network,” Wiley J. Bioelectromagn., vol. 33, no. 4, pp. 320–325, May 2012.
  235. [235] H. Tabassum, M. Z. Shakir, and M. Alouini, “On the area green efficiency (AGE) of heterogeneous networks,” Proceedings of International Conference on Global Communications, GLOBECOM'2012, pp. 1–6, Anaheim, CA, USA, Dec. 2012.
  236. [236] Energy and carbon conversions: fact sheet, http://www.carbontrust.com, Online accessed, Nov. 2012.
  237. [237] International Monetary Fund, World Economic Outlook (WEO) Database Groups and Aggregates Information, http://www.imf.org/external/ pubs/ft/weo/2012/01/weodata/ groups.htm, Online accessed, April 2012.
  238. [238] S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed., Academic Press, New York, 2000.
  239. [239] UMTS Forum, UMTS Forum Report: Mobile Traffic Forecasts: 2010-2020, Jan. 2011.
  240. [240] Ericsson, More Than 50 Billion Connected Devices, White paper, Feb. 2011.
  241. [241] H. Ishii, Y. Kishiyama, and H. Takahashi, “A novel architecture for LTE-B: C-plane/U-plane split and Phantom Cell concept,” 2012 IEEE Globecom Workshops (GC Wkshps), pp. 624–630, Dec. 2012.
  242. [242] J. G. Andrews, H. Glaussen, M. Dohler, S. Rangan, and M. C. Reed, “Femtocells: past, present, and future,” IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 497–508, April 2012.
  243. [243] A. Damnjanovic, J. Montojo, W. Yongbin, J. Tingfang, L. Tao, M. Vajapeyam, Y. Taesang, S. Osok, and D. Malladi, “A survey on 3GPP heterogeneous networks,” IEEE Wireless Commun. Mag., vol. 18, no. 3, pp. 10–21, Jun. 2011.
  244. [244] I. Guvenc, “Capacity and fairness analysis of heterogeneous networks with range expansion and interference coordination,” IEEE Commun. Lett., vol. 15, no. 10, pp. 1084–1087, 2011.
  245. [245] K. Okino, T. Nakayama, C. Yamazaki, H. Sato, and Y. Kusano, “Pico cell range expansion with interference mitigation toward LTE-Advanced heterogeneous networks,” Proceedings of IEEE International Workshop on Heterogeneous Networks, pp. 1–5, June 2011.
  246. [246] I. Shgluof, M. Ismail, and R. Nordin, “Efficient femtocell deployment under macrocell coverage in LTE-Advanced system,” Proceedings of the International Conference on Computing, Management and Telecommunications (ComManTel), pp. 60–65, Jan. 2013.
  247. [247] M. Z. Shakir and M.-S. Alouini, “On the area spectral efficiency improvement of heterogeneous network by exploiting the integration of macro-femto cellular networks,” Proceedings of IEEE International Conference on Communications, pp. 1–6, June 2012.
  248. [248] Informa Telecoms & Media, “Small cell market status,” Report for Small Cell Forum (Issue 2), pp. 1–14, June 2012.
  249. [249] M. Z. Shakir, H. Tabassum, K. Qaraqe, E. Serpedin, M.-S. Alouini, and M. A. Imran, “Green heterogeneous small-cell networks: toward reducing the CO2 emissions of mobile communication industry via uplink adaptation,” IEEE Commun. Mag., vol. 51, no. 6, pp. 52–61, Jun. 2013.
  250. [250] O. Tipmongkolsilp, S. Zaghloul, and A. Jukan, “The evolution of cellular backhaul technologies: current issues and future trends,” IEEE Commun. Surv. Tutorials, vol. 13, no. 1, pp. 97–113, 2011.
  251. [251] M. Paolini, L. Hiley, and F. Rayal, Small-cell backhaul: industry trends and market overview, http://www.proxim.com/downloads/brochures/Proxim_small_call_backhaul.pdf, 2013.
  252. [252] K. Doppler, M. Rinne, C. Wijting, C. Ribeiro, and K. Hugl, “Device-to-device communication as an underlay to LTE-advanced networks,” IEEE Commun. Mag., vol. 27, no. 12, pp. 42–49, Dec. 2009.
  253. [253] P. Janis, C. Yu, K. Doppler, C. Ribeiro, C. Wijting, K. Hugl, O. Tirkkonen, and V. Koivunen, “Device-to-device communication underlaying cellular communications systems,” Int. J. Commun. Netw. Syst. Sci., vol. 2, no. 3, pp. 169–178, 2009.
  254. [254] S. Hakola, T. Chen, J. Lehtomäki, and T. Koskela, “Device-to-device (D2D) communication in cellular network - performance analysis of optimum and practical communication mode selection,” Proceedings of IEEE Wireless Communications and Networking Conference (WCNC'2010), pp. 1–6, April 2010.
  255. [255] CISCO Systems, “Cisco service provider Wi-Fi: A platform for business innovation and revenue generation,” Solution Overview, pp. 1–12, June 2012.
  256. [256] H. Tabassum, M. Z. Shakir, and M. Alouini, “Area green efficiency (AGE) of two tier heterogeneous cellular networks,” Proceedings of IEEE Conference on Global Communications, (GLOBECOM'2012), pp. 529–534, Dec. 2012.
  257. [257] S. Tombaz, P. Monti, W. Kun, A. Vastberg, M. Forzati, and J. Zander, “Impact of backhauling power consumption on the deployment of heterogeneous mobile networks,” Proceedings of Conference on Global Communications, (GLOBECOM'2011), pp. 1–5, Dec. 2011.
  258. [258] J. Baliga, K. Hinton, and R. S. Tucker, “Energy consumption of the Internet,” Proceedings of Joint International Conference on Optical Internet, 2007 and the 32nd Australian Conference on Optical Fibre Technology (COIN-ACOFT'07), pp. 1–3, June 2007.
  259. [259] B. Skubic and D. H. Ericsson, “Evaluation of ONU power saving modes for gigabit-capable passive optical networks,” IEEE Mag. Network, vol. 25, no. 2, pp. 20–24, 2011.
  260. [260] S. Verdu, “Spectral efficiency in the wideband regime,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1319–1343, Jun. 2002.
  261. [261] G. Auer et al., “How much energy is needed to run a wireless network?” IEEE Wireless Commun. Mag., vol. 18, no. 5, pp. 40–49, Oct. 2011.
  262. [262] Wolfram|Alpha, http://reference.wolfram.com/language/ref/Gamma.html, Online accessed, Sept. 2014.
  263. [263] A. Cuyt, V. B. Petersen, B. Verdonk, H. Waadeland, and W. B. Jones, Handbook of Continued Fractions for Special Functions, Springer-Verlag, 2008.
  264. [264] NSN, Nokia solutions and networks looking ahead to 5G, White paper, Nokia Solutions and Networks Oy, Finland, Dec. 2013.
  265. [265] A. Radwan and J. Rodriguez, Energy Efficient Smart Phones for 5G Networks, Springer-Verlag, 2015.
  266. [266] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communication in cellular networks,” IEEE Commun. Surv. Tutorials, vol. 16, no. 4, pp. 1801–1819, Nov. 2014.
  267. [267] Q. Wang and B. Rengarajan, “Recouping opportunistic gain in dense base station layouts through energy-aware user cooperation,” Proceedings of IEEE International Symposium on World of Wireless, Mobile and Multimedia Networks, (WoWMoM), pp. 1–9, 2013.
  268. [268] L. B. Le, “Fair resource allocation for device-to-device communications in wireless cellular networks,” Proceedings of IEEE Conference on Telecommunications, (GLOBECOM), pp. 5451–5456, 2012.
  269. [269] T. Han, R. Yin, Y. Xu, and G. Yu, “Uplink channel reusing selection optimization for device-to-device communication underlaying cellular networks,” Proceedings of IEEE International Symposium on Personal Indoor, and Mobile Radio Communications, (PIMRC), 2012.
  270. [270] C. H. Yu and O. Tirkkonen, “Device-to-device underlay cellular network based on rate splitting,” Proceedings of IEEE Conference on Wireless Communications and Networking, (WCNC), 2012.
  271. [271] X. Chen, L. Chen, M. Zeng, X. Zhang, and D. Yang, “Downlink resource allocation for device-to-device communication underlaying cellular networks,” Proceedings of IEEE International Symposium on Personal Indoor, and Mobile Radio Communications, (PIMRC), 2012.
  272. [272] M. J. Yang, S. Y. Lim, H. J. Park, and N. H. Park, “Solving the data overload: device-to-device bearer control architecture for cellular data offloading,” IEEE Veh. Technol. Mag., vol. 8, no. 1, pp. 31–39, 2013.
  273. [273] C. Isheden and G. P. Fettweis, “Energy-efficient multi-carrier link adaptation with sum rate-dependent circuit power,” Proceedings of IEEE International Conference on Global Communications, (GLOBECOM), pp. 1–6, Dec. 2010.
  274. [274] L. M. Ausubel and P. Milgrom, Chapter 3: Ascending Proxy Auctions - Combinatorial Auctions, MIT Press, 2015.
  275. [275] L. Lei, Y. Zhang, X. Shen, C. Lin, and Z. Zhong, “Performance analysis of device-to-device communications with dynamic interference using stochastic Petri nets,” IEEE Trans. Wireless Commun., vol. 12, no. 12, pp. 6121–6141, Dec. 2013.
  276. [276] M. Ali, J. M. Zain, M. F. Zolkipli, and G. Badshah, “Mobile cloud computing & mobile battery augmentation techniques: a survey,” Proceedings of IEEE Student Conference on Research and Development (SCOReD), pp. 1–6, Dec. 2014.
  277. [277] J. D. Power Associate, Wireless Smartphone Customer Satisfaction, vol. 1, http://www.jdpower.com/sites/ default/files/2012030-whst.pdf, Mar. 2012.
  278. [278] DigiKey Electronics, Battery Life Calculator, http://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-battery-life, Online accessed, Jul. 2015.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset