List of Symbols

SymbolExplanationUnit
αthermal diffusivitymm2 s−1
αcorrection factor
βartificial compressibility factor
ΓGamma function
γsurface tensionmN m−1, J m−2
γfree surface energyJ m−2, N m−1
γccritical surface tensionmN m−1, mJ m−2
δdelta function
δgas dilution factor
G0free standard enthalpy of reactionkJ mol−1
ΔGf0si1_efree standard enthalpy of formationkJ mol−1
Hreaction enthalpykJ mol−1
H0standard reaction enthalpykJ mol−1
ΔHf0si2_estandard enthalpy of formationkJ mol−1
Hvapenthalpy of vaporizationkJ mol−1
imgroughness heightm
imgdepth of the potential well in the Lennard-Jones potentialJ
ζRiemann zeta function
ηviscositymPa s, cP
ηresidual function
Θcontact angle°
ΘHeaviside function
Θaadvancing contact angle°
Θrreceding contact angle°
κcurvaturem−1
κconductivityS, Ω −1 m−1
λmean free path of a gas molecule before experiencing a collisionm
λthermal conductivityW m−1 K−1
λwavelengthm
µchemical potentialJ
νfrequencys−1
νkinematic viscositym2 s−1
ρmdensity per lengthg cm−4, kg m−4
ρspecific resistanceΩ m
ρmass concentrationg L−1
ρdensitykg m−3
ρelcharge densityA s m−3, C m−3
σdiffusion or transport mobilitykg s−1
σatom distance for which the Lennard-Jones potential is 0m
σnormal stressPa, N mm−2
τshear stressPa, N mm−2
Ψdissipation coefficients−2
Ψgravitational potentialm2 s−2
ωrelaxation parameter
ωangular frequency, angular velocitys−1
a, asi3_eacceleration vector, in Cartesian coordinates composed of the x-component ax, y-component ay and z-component azm s−2
Aaream2
bmolalitymol kg−1
BBernoulli number
BoBond number, relates buoyancy forces to surface tension
cmolar concentrationmol L−1
CcapacitanceF
Csi30_ecompactness factor
ceqequivalent concentrationmol L−1
cpisobaric heat capacityJ kg−1 K−1
csspeed of soundm s−1
cvisochoric heat capacityJ kg−1 K−1
CaCapillary number, relates viscous forces to surface tension
cconstant
ddiameterm
dthicknessm
Dspring constantN m−1
Ddiffusion coefficientm2 s−1
dHhydraulic diameterm
especific energyJ kg−1
EenergyJ
E, Esi4_eelectric fieldV m−1
eVvolume-specific energyJ m−3
Edbond energyJ
E0Standard reduction potentialsV
EcEckert number, relates kinetic energy to enthalpy
EoEötvös number, relates buoyancy forces to surface tension
erferror function
erfccomplementary error function
fDarcy friction factor
F, Fsi5_eforceN
Ffunction value f (x) at discreet value of xany physical unit
feqequivalence factor
FrFroude number, relates inertia forces to gravity forces
GGibbs (free) energyJ
hstep widthany physical unit
h.si16_especific enthalpy flowJ kg−1 s−1
h, Hheightm
hspecific enthalpyJ kg−1
HenthalpyJ
H.si17_eenthalpy flowJ s−1
hccapillary heightm
I, IIdentity matrix
Ielectrical currentA
Iν, Imodified Bessel function of order ν of the first kind
Jmass fluxkg m−2 s−1
J, JJacobian matrix, commonly used for coordinate system transformation
Jν, JBessel function of order ν of the first kind
kproportionality factor; constant
kdamping constantN s m−1
kwavenumber k=2πλsi6_e
k, ksi7_evolume forceN m−3
Kν, Kmodified Bessel function of order ν of the second kind
Kp0si8_eequilibrium constant at standard conditions referred to the partial pressures, which are proportional to the molar concentrations
Kcequilibrium constant, referred to the molar concentrations
Kc0si18_eequilibrium constant at standard conditions, referred to the molar concentrations
Kpequilibrium constant referred to the partial pressures, which are proportional to the molar concentrations
KnKnudsen number, relates the mean free path to a characteristic length of a problem, allows determining if the continuum hypothesis is valid
llengthm
lccircumferencem
Lccapillary lengthm
Lsslip lengthm
Lcharcharacteristic length scale of a problemm
LeLewis number, relates mass transport to energy transport
mmasskg
m.si19_emass flowkg s−1
Mmolecular weight or molar massg mol−1
MtorqueN m
MMach number, relates the flow velocity to the speed of sound, allows determining if a gas can be considered as being incompressible
MaMarangoni number, relates Marangoni forces (due to temperature gradients) to viscous forces
namount of substancemol
nspeed of rotationmin−1
Nnumber of molecules
neqequivalent amount of substancemol
nDnumber density, i.e., the number of molecules per volumem−3
Oerror function
OhOhnesorge number, relates viscous forces to the produce of inertia and surface tension forces
pmomentumkg m s−1
Pelectrical powerW
p0standard pressurePa
Pemass transport related Péclet number, relates convective to diffusive transport
pHpH value
pIisoelectric point
s, ssi9_e, xposition vector, path, in Cartesian coordinates composed of the x-component sx, y-component sy and z-component szm
PrPrandtl number, relates momentum transport to heat transport
p, p˜si10_epressurePa, bar
qspecific heatJ kg−1
q.si20_especific heat flowJ kg−1 s−1
q.Asi21_earea-specific heat flowJ m−2 s−1
QheatJ
Qflow ratem3 s−1
Qelectrical chargeC
Q.si22_eheat flowJ s−1
qVvolume-specific heatJ m−3
r, R, R˜si11_eradiusm
raspect ratio
Rohmic resistanceΩ
Rsi23_eresidual
Rn,hydnormalized hydraulic resistancekg m−5 s−1
Rhydhydraulic resistancekg m−4 s−1
RA,hydcross-section hydraulic resistancemPa s m−1
RA,geomgeometric hydraulic resistancekg m−5 s−1 mPa−1 s−1, m−3 mm−1
RSspecific gas constantJ kg−1 mol−1
rmatom distance for which the Lennard-Jones potential is minimalm
ReReynolds number, relates the inertial forces to the viscous forces, allows determining if a flow can be considered to be laminar
sspecific entropyJ K−1 kg−1
sarclengthm
ssi9_evector to the point S in space
Sspreading parameterJ m−2
SentropyJ K−1
S.si24_eentropy flowJ K−1 s−1
S0standard entropyJ mol−1
ScSchmidt number, relates momentum transport to mass transport
signsignum function
wspecific workJ kg−1
s.si25_especific entropy flowJ kg−1 s−1
t, t˜si13_etimes
Tperiod lengths
Ttrial function
Tν, TChebyshev polynomial of order ν of the first kind
Tbboiling temperatureK, si183_eC
TtemperatureK
uspecific internal energyJ kg−1
Uinternal energyJ
UvoltageV
Uν, UChebyshev polynomial of order ν of the second kind
uVvolume-specific internal energyJ m−3
v,v,v˜,v˜si14_evelocity vector, in Cartesian coordinates composed of the x-component vx, y-component vy and z-component vzm s−1
vspecific volumem3 kg−1
V.si26_evolume flowkg m−3
Vvolumem3
VLJLennard-Jones potentialJ
wmass fractionkg kg1
w.si27_especific work flowJ kg 1 s−1
w, Wwidthm
W.si28_ework flowJ s 1
WworkJ
WeWeber number, relates inertia forces to surface tension
xmolar fractionmol mol−1
Xvalue of the derivative dfdx(x)si29_e of the function f (x) at discreet value of xany physical unit
Yν, YBessel function of order ν of the second kind; Weber function of order ν
znumber of charges transferred in an electrochemical reaction
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset