7.4 Position, Velocity, and Acceleration

7.4.1 Cartesian Coordinates

The Cartesian coordinate system uses the coordinate axis vectors exsi138_e, eysi139_e, and ezsi118_e which are independent of time and independent of the position vector ssi6_e (see Fig. 7.4a). In the Cartesian coordinate systems, the position vector ssi6_e, the velocity vector vsi7_e, and the acceleration vector asi8_e are defined as

s=sxsyszv=dvdt=dsxdtdsydtdszdt2a=dvdt=d2sdt2d2sxdt2d2sydt2d2szdt2=sxex+syey+szez=vxex+vyey+vzez=axex+ayey+azez

si216_e

7.4.2 Cylindrical Coordinates

The coordinate axis of the cylindrical coordinate system is dependent on the position vector ssi6_e and is thus also dependent on time if the position vector is a function of time (see Fig. 7.4b). This means that the coordinate system changes over time and whenever ssi6_e changes. This is a bit confusing as we are used to time-and space-invariant coordinate system. However, this is not a significant problem, as it only involves a bit more calculus in order to establish the velocity vsi7_e and the acceleration vector asi8_e both of which are derived from the position vector as temporal derivatives.

We have already derived the unit vectors of the cylindrical coordinate systems in Eq. 7.23 and Eq. 7.24. We have also learned that the z-coordinate is identical to the coordinate of the Cartesian coordinate system. We found

ereφez===cosφsinφ0sinφcosφ0001

si221_e

As stated, the unit vectors depend on the unit vectors of the Cartesian coordinate system. In order to derive the velocity vector vsi7_e and the acceleration vector asi8_e we need the temporal derivatives given by

derdt=dcosφsinφ0dt=dφdtsinφdφdtcosφ0=dφdteφ

si224_e  (Eq. 7.54)

deφdt=dsinφcosφ0dt=dφdtcosφdφdtsinφ0=dφdter

si225_e  (Eq. 7.55)

dezdt=d001dt=000

si226_e  (Eq. 7.56)

Please note that we have to use the chain rule of differentiation here (see Eq. 3.14). As you can see, the derivatives can be written as functions of the coordinate axes. Using these we can now formulate the position vector ssi6_e, the velocity vector vsi7_e, and the acceleration vector asi8_e as

s=rer+zez=r0z

si230_e  (Eq. 7.57)

v=dsdt=drdter+rderdt+dzdtez+zdezdt=drdter+rdφdteφ+dzdtez=drdtrdφdtdzdt

si231_e  (Eq. 7.58)

a=dvdt=d2rdt2er+drdtderdt+drdtdφdteφ+r(d2φdt2eφ+dφdtdeφdt)+d2zdt2ez=(d2rdt2r(dφdt)2)er+(2drdtdφdt+rd2φdt2)eφ+d2zdt2ez=d2rdt2r(dφdt)22drdtdφdt+rd2φdt2d2zdt2

si232_e  (Eq. 7.59)

where we have used Eq. 7.54, Eq. 7.55, and Eq. 7.56 to convert the time-derivative of the coordinate axes into functions of the axes only. Eq. 7.57, Eq. 7.58, and Eq. 7.59 are the sought position, velocity, and acceleration vectors in the cylindrical coordinate system.

7.4.3 Polar Coordinates

Given the fact that polar coordinates (see Fig. 7.4c) are a special case of cylindrical coordinates, we can note down the position, velocity, and acceleration vectors by copying the vectors from the cylindrical coordinates while ignoring the z-component. We therefore find from Eq. 7.57, Eq. 7.58, and Eq. 7.59

s=(r0)

si233_e  (Eq. 7.60)

v=(drdtrdφdt)

si234_e  (Eq. 7.61)

a=d2rdt2r(dφdt)22drdtdφdt+rd2φdt2

si235_e  (Eq. 7.62)

7.4.4 Spherical Coordinates

We have already derived the unit vectors of the spherical coordinate system (see Fig. 7.4d) given by Eq. 7.40, Eq. 7.42, and Eq. 7.41 as

eρeθeφ=sinθcosφex+sinθsinφey+cosθez=cosθcosφex+cosθsinφeysinθez=sinφex+cosφey

si236_e

where we again formulate the time-derivatives that we will require for finding the position, velocity, and acceleration vectors

deρdt=(dθdtcosθcosφdφdtsinθsinφ)ex+(dθdtcosθsinφ+dφdtsinθcosφ)eydθdtsinθezdφdtsinθ(sinφex+cosφey)+dθdt(cosθcosφex+cosθsinφey)dφdtsinθeφ+dθdteθ

si237_e  (Eq. 7.63)

deφdt=dφdtcosφexdφdtsinφey=dφdt(sinθep+cosθeθ)

si238_e  (Eq. 7.64)

deθdt=(dθdtsinθcosφdφdtcosθsinφ)ex+(dθdtsinθsinφ+dφdtcosθcosφ)eydθdtcosθezdθdt(sinθcosφex+sinθsinφey+cosθez)+dφdtcosθ(sinφex+cosφey)dθdteρ+dφdtcosθeφ

si240_e  (Eq. 7.65)

The last expression that results in Eq. 7.65 is not intuitive and the replacing of exsi138_e and eysi139_e by eρsi122_e and eθsi123_e requires a bit of rewriting. However, if you check the expression, you will see that it is actually correct. Using Eq. 7.63, Eq. 7.64, and Eq. 7.65 we can now derive the position, velocity, and acceleration vectors in the spherical coordinate systems as

s=ρeρ

si245_e  (Eq. 7.66)

u=dsdt=dpdteρ+ρdeρdt=dρdteρ+ρdθdteθ+ρdφdtsinθeφ

si246_e  (Eq. 7.67)

a=dvdt=d2ρdt2eρ+dpdtdeρdt+dpdtdφdtsinθeφ+ρ(d2φdt2sinθeφ+dφdt(dθdtcosθeφ+sinθdeφdt))+dρdtdθdteθ+ρ(d2θdt2eθ+dθdtdeθdt)=d2ρdt2eρ+dρdt(dφdtsinθeφ+dθdteθ)+dρdtdφdtsinθeφ+ρ(d2φdt2sinθeφ+dφdt(dθdtcosθeφ+sinθ(dφdt(sinθeρ+cosθeθ))))+dρdtdθdteθ+ρ(d2θdt2eθ+dθdt(dθdteρ+dφdtcosθeφ))=d2ρdt2eρ+dρdtdφdtsinθeφ+dρdtdθdteθ+dpdtdφdtsinθeφ+ρd2φdt2sinθeφ+ρdφdtdθdtcosθeφρdφdtsinθdφdtsinθeρρdφdtsinθdφdtcosθeθ+dρdtdθdteθ+ρd2θdt2eθρdθdtdθdteρ+ρdθdtdφdtcosθeφ=(d2ρdt2ρ(dφdt)2sin2θρ(dθdt)2)eρ+(2dρdtdθdtρ(dφdt)2sinθcosθ+ρd2θdt2)eθ+((2dρdtdφdt+ρd2φdt2)sinθ+2rdφdtdθdtcosθ)eφ

si247_e  (Eq. 7.68)

Eq. 7.66, Eq. 7.67, and Eq. 7.68 are the sought vectors for position ssi6_e, velocity usi249_e, and acceleration asi8_e. The derivation is not too complicated given Eq. 7.63, Eq. 7.64, and Eq. 7.65 and careful application of the chain rule of differentiation (see Eq. 3.14).

7.5 Jacobian Matrix

7.5.1 Definition and Usage

The Jacobian matrix or simply Jacobian is a matrix which is required for the conversion of surface and volume integrals from one coordinate system to another. For a vector F=F1(x1,,xn)e1+F2(x1,,xn)e2++Fn(x1,,xn)ensi251_e

JF=F1(x1,,xn)x1F2(x1,,xn)x1F1(x1,,xn)x2F2(x1,,xn)x2F1(x1,,xn)xnF2(x1,,xn)xnFn(x1,,xn)x1Fn(x1,,xn)x2Fn(x1,,xn)xn

si252_e  (Eq. 7.69)

As you can see, the Jacobian matrix sums up all the changes of each component of the vector Fsi1_e along each coordinate axis, respectively. Jacobian matrices are used to transform the infinitesimal vectors from one coordinate system to another. We will mostly be interested in the Jacobian matrices that allow transformation from the Cartesian to a different coordinate system.

7.5.2 Cartesian/Cylindrical Coordinates Conversion

We will begin with the Jacobian matrix for the conversion of Cartesian to cylindrical coordinates. We have already determined the vector (see Eq. 7.22) in Cartesian coordinates that is

F(r,φ,z)=rcosφex+rsinφey+zez

si254_e

Now we build the Jacobian for this vector given according to Eq. 7.69 by

J=xryrzrxφyφzφxzyzzz=(rcosφ)r(rsinφ)rzr(rcosφ)φ(rsinφ)φzφ(rcosφ)z(rsinφ)zzz=cosφsinφ0rsinφrcosφ0001

si255_e  (Eq. 7.70)

As stated, the Jacobian matrix allows us to express a relationship between the infinitesimal vectors dxdydzsi256_e and drdφdzsi257_e by using

dxdydz=Jdrdφdz=xryrzrxφyφzφxzyzzzdrdφdz=xrdr+xφdφ+xzdzyrdr+yφdφ+yzdzzrdr+zφdφ+zzdz

si258_e  (Eq. 7.71)

One can easily confirm that this calculus is correct by performing the matrix/vector multiplication which yields the total differentials according to Eq. 3.12. If the inverse transformation is to be made, the inverse Jacobian matrix J 1 must be used. Without actually deriving the matrix (which is straightforward, but a little tedious) the inverse Jacobi matrix J 1 is given by

J1=rxφxzxryφyzyrzφzzz=cosφsinφr0sinφcosφr0001

si259_e  (Eq. 7.72)

We will discuss examples of matrix inversion in section 25.2.2. The inverse Jacobian is used to transfer the infinitesimal vector drdφdzsi257_e in cylindrical coordinates to the infinitesimal vector dxdydzsi256_e in Cartesian coordinates by

drdφdz=J1dxdydz=rxφxzxryφyzyrzφzzzdxdydz=rxdx+rydy+rzdzφxdx+φydy+φzdzzxdx+zydy+zzdz

si262_e  (Eq. 7.73)

which is, again, simply the total differential (see Eq. 3.12). Inverse matrices can only be constructed if the determinant of the matrix is nonzero (see the following section on the Jacobian determinant for a quick review of what exactly the determinant of a matrix is). There exist several methods for constructing the inverse matrix of a mix with nonzero determinant, e.g., the Gauß-Jordan1 elimination (see section 25.2.2). In case of the Jacobian constructed for our matrix, the inverse matrix is given by Eq. 7.72. As stated, Jacobian and inverse Jacobian are used to transfer the infinitesimal vectors between the two coordinate systems according to

dxdydzdrdφdz=Jdrdφdz=J1dxdydz

si263_e

If you perform the matrix multiplication J·J− 1 you would find the unit matrix.

Jacobian Determinant. Besides the Jacobian matrix, we will also require the Jacobian determinant which is given by

detJ=F1(x1,,xn)x1F2(x1,,xn)x1Fn(x1,,xn)x1F1(x1,,xn)x2F2(x1,,xn)x2Fn(x1,,xn)x2F1(x1,,xn)xnF2(x1,,xn)xnFn(x1,,xn)xn

si264_e

The Jacobian determinant is used extensively during integral transformation as it is an important component of the Gauss’s theorem that we discussed in section 7.2.1. Returning to the Jacobian found for the transformation of Cartesian to cylindrical coordinates (see Eq. 7.70), the Jacobian determinant can be calculated to be

detJ=cosφsinφ0rsinφrcosφ0001=rcos2φ+rsin2φ=r

si265_e  (Eq. 7.74)

So in fact the Jacobian matrix of Eq. 7.70 has a nonzero determinant and thus the inverse can be constructed. It is given by Eq. 7.72.

7.5.3 Cartesian/Polar Coordinates Conversion

Again, we can simplify the derivation of the Jacobian and the inverse Jacobian for the conversion of Cartesian to polar coordinates by noting that polar coordinates are merely a special case of cylindrical coordinates. Both matrices are 2 × 2 matrices given by

J=xryrxφyφ=rcosφrrsinφrrcosφφrsinφφ=(cosφsinφrsinφrcosφ)

si266_e  (Eq. 7.75)

and

J1==rxφxryφy(cosφsinφrsinφcosφr)

si267_e  (Eq. 7.76)

Jacobian Determinant. The Jacobian determinant is given by

detJ=cosφsinφrsinφrcosφ=rcos2φ+rsin2φ=r

si268_e  (Eq. 7.77)

7.5.4 Cartesian/Spherical Coordinates Conversion

We will now derive the Jacobian matrix for the conversion of Cartesian to spherical coordinates using the position vector (see Eq. 7.78) in Cartesian coordinates given by

F(ρ,θ,φ)=ρsinθcosφex+ρsinθsinφey+ρcosθez

si269_e  (Eq. 7.78)

Now we built the Jacobian for this vector given according to Eq. 7.69 given by

J=xρyρzρxθyθzθxφyφzφ=(ρsinθcosφ)ρ(ρsinθsinφ)ρ(ρcosθ)ρ(ρsinθcosφ)θ(ρsinθsinφ)θ(ρcosθ)θ(ρsinθcosφ)φ(ρsinθsinφ)φ(ρcosθ)φ=sinθcosφsinθsinφcosθρcosθcosφρcosθsinφρsinθρsinθsinφρsinθcosφ0

si270_e  (Eq. 7.79)

The inverse matrix is given by

J1=ρxθxφxρyθyφyρzθzφz=sinθcosφ1ρcosθcosφ1ρsinφsinθsinθsinφ1ρcosθsinφ1ρcosφsinθcosθ1ρsinθ0

si271_e  (Eq. 7.80)

Jacobian Determinant. The determinant of Eq. 7.79 is given by

detJ=sinθcosφsinθsinφcosθρcosθcosφρcosθsinφρsinθρsinθsinφρsinθcosφ0=ρ2(cos2θcos2φsinθ+sin2θsin2φsinθ(sinθsin2φcos2θsin2θcos2φsinθ))=ρ2((cos2θ+sin2θ)cos2φsinθ+(sin2θ+cos2θ)sin2φsinθ)=ρ2sinθ(cos2φ+sin2φ)=ρ2sinθ

si272_e  (Eq. 7.81)

7.6 Operators Transformed into the different Coordinate Systems

In this section, we will convert the most common operators into cylindrical, polar, and spherical coordinates. As you will see, transferring operators from one coordinate system to another is not difficult, but it involves quite a bit of rewriting of partial and total differentials. The operators which we require are the gradient, the divergence, the curl, and the Laplace operator. We will also transform the material derivative. We introduced these operators in section 7.1.3.

7.6.1 Cylindrical Coordinates

7.6.1.1 Gradient

We will begin by converting the gradient of the scalar ψ defined as

ψ=ψxex+ψyey+ψzez

si273_e  (Eq. 7.82)

We already discussed this operator for Cartesian coordinates where ψ (x, y, z) is a function of x, y, and z. When converted to a function of r, φ, and z we obtain ψ (r, φ, z). Consequently we need to use the total differentials given by

ψx=ψrrx+ψφφx+ψzzx

si274_e  (Eq. 7.83)

ψy=ψrry+ψφφy+ψzzy

si275_e  (Eq. 7.84)

ψz=ψrrz+ψφφz+ψzzz

si276_e  (Eq. 7.85)

As you can see, we require a couple of partial derivatives that we can obtain from the inverse Jacobian (see Eq. 7.72) from which we find

rxryrzφxφyφzzxzyzz=cosφ=sinφ=0=sinφr=cosφr=0=0=0=1

si277_e

Inserting these partial differentials into Eq. 7.83, Eq. 7.84, and Eq. 7.85 we find

ψx=cosφψrsinφrψφ

si278_e  (Eq. 7.86)

ψy=sinφψr+cosφrψφ

si279_e  (Eq. 7.87)

ψz=ψz

si280_e  (Eq. 7.88)

which we can reinsert into Eq. 7.82 to find

ψ=(cosφψrsinφrψφ)ex+(sinφψr+cosφrψφ)ey+ψzez

si281_e  (Eq. 7.89)

In the last step, we need to express the basis vectors ex,ey,andezsi14_e of the Cartesian coordinate system as functions of the basis vectors er,eφ,andezsi283_e of the cylindrical coordinate system using Eq. 7.37 and Eq. 7.38. Using these equations we can rewrite Eq. 7.89 to

ψψ=(cosφψrsinφrψφ)(cosφersinφeφ)+(sinφψr+cosφrψφ)(sinφer+cosφeφ)+ψzez=(cos2φψrsinφcosφrψφ+sin2φψr+sinφcosφrψφ)er+(sinφcosφψr+sin2φrψφ+sinφcosφψr+cos2φrψφ)eφ+ψzez=ψrer+1rψφeφ+ψzez

si284_e  (Eq. 7.90)

Eq. 7.90 gives the gradient in cylindrical coordinates.

7.6.1.2 Divergence

Next we derive the divergence Fsi2_e of the vector Fsi1_e given by

F=Frer+Fφeφ+Fzez=(FrcosφFφsinφ)ex+(FrsinφFφcosφ)ey+Fzez

si287_e  (Eq. 7.91)

in cylindrical coordinates. Here we have used Eq. 7.32 to convert the basis vectors. The divergence is given as

F=x(FrcosφFφsinφ)+y(Frsinφ+Fφcosφ)ey+Fzz=Frxcosφ+FrcosφxFφxsinφFφsinφx+Frysinφ+Frsinφy+Fφycosφ+Fφcosφy+Fzz

si288_e  (Eq. 7.92)

where we need to transfer the partial differentials with respect to x, y, and z to partial differentials of r, φ, and z. For this we find

FrxFry=Frrrx+Frφφx+Frzzx=FrrcosφFrφsinφr=Frrry+Frφφy+Frzzy=Frrsinφ+Frφcosφr

si289_e

FrzFφxFφyFφzFzxFzyFzzcosφxsinφxcosφysinφycosφzsinφz=Frrrz+Frφφz+Frzzz=Frz=Fφrrx+Fφφφx+Fφzzx=FφrcosφFφφsinφr=Fφrry+Fφφφy+Fφzzy=Fφrsinφ+Fφφcosφr=Fφrrz+Fφφφz+Fφzzz=Fφz=Fzrrx+Fzφφx+Fzzzx=FzrcosφFzφsinφr=Fzrry+Fzφφy+Fzzzy=Fzrsinφ+Fzφcosφr=Fzrrz+Fzφφz+Fzzzz=Fzz=cosφrrx+cosφφφx+cosφzzx=sin2φr=sinφrrx+sinφφφx+sinφzzx=sinφcosφr=cosφrry+cosφφφy+cosφzzy=sinφcosφr=sinφrry+sinφφφy+sinφzzy=cos2φr=cosφrrz+cosφφφz+cosφzzz=0=sinφrrz+sinφφφz+sinφzzz=0

si502_e

We have derived a couple of additional partial differentials which we do not require at this point. However, we will require them when deriving the curl in cylindrical coordinates. Using the derived partial differentials we can rewrite Eq. 7.92 to

F=(FrrcosφFrφsinφr)cosφ+Frsin2φr(FφrcosφFφφsinφr)sinφ+Fφsinφcosφr+(Frrsinφ+Frφcosφr)sinφ+Frcos2φr+(Fφrsinφ+Fφφcosφr)cosφFφsinφcosφr+Fzz+Frφ(sinφcosφr+sinφcosφr)+Fφr(sinφcosφ+sinφcosφ)+Fφφ(sin2φr+cos2φr)+Fzz=Fr(sin2φr+cos2φr)+Fφ(sinφcosφrsinφcosφr)+Frr(cos2φ+sin2φ)

si290_e

F=Frr+Frr+1rFφφ+Fzz

si291_e  (Eq. 7.93)

F=1rr(rFr)+1rFφφ+Fzz

si292_e  (Eq. 7.94)

Eq. 7.93 gives the divergence in cylindrical coordinates with Eq. 7.94 being a slightly more compact notation.

7.6.1.3 Curl

In the next step, we will derive the curl in cylindrical coordinates. For this we use the vector Fsi1_e in cylindrical coordinates given by Eq. 7.91 as

F=(FrcosφFφsinφ)ex+(Frsinφ+Fφcosφ)ey+Fzex

si294_e  (Eq. 7.95)

From Eq. 7.5 we know the curl is defined as

×F×F=(FzyFyz)ex+(FxzFzx)ey+(FyxFxy)ez=(FzyFyz)(cosφersinφeφ)+(FxzFzx)(sinφercoseφ)+(FyxFxy)ez=((FzyFyz)cosφ+(FxzFzx)sinφ)er+((FyzFzy)sinφ+(FxzFzx)cosφ)eφ+(FyxFxy)ez

si295_e  (Eq. 7.96)

where we have replaced the basis vectors ex,ey,andezsi14_e by the basis vectors er,eφ,andezsi283_e (see Eq. 7.28 and Eq. 7.29). We now require several partial differentials

FxyFxzFyxFyzFzxFzy=Fxrry+Fxφφy+Fxzzy=Fxrsinφ+Fxφcosφr=r(FrcosφFφsinφ)sinφ+φ(FrcosφFφsinφ)cosφr=(Frrcosφ+FrcosφrFφrsinφFφsinφr)sinφ+(Frφcosφ+FrcosφφFφφsinφFφsinφφ)cosφr=FrrsinφcosφFφrsin2φ+Frφcos2φrFrsinφcosφrFφφsinφcosφrFφcos2φr=Fxrrz+Fxφφz+Fxzzz=Fxz=z(FrcosφFφsinφ)=Frzcosφ=Fφzsinφ=Fyrrx+Fyφφx+Fyzzx=FyrcosφFyφsinφr=r(Frsinφ+Fφcosφ)cosφφ(Frsinφ+Fφcosφ)sinφr=(Frrsinφ+Frsinφr+Fφrcosφ+Fφcosφr)cosφ(Frφsinφ+Frsinφφ+Fφφcosφ+Fφcosφφ)sinφr=Frrsinφcosφ+Fφrcos2φFrφsin2φrFrsinφcosφrFφφsinφcosφr+Fφsin2φr=Fyrrz+Fyφφz+Fyzzz=z(Frsinφ+Fφcosφ)=Frzsinφ+Frsinφz+Fφzcosφ+Fφcosφz=Frzsinφ+Fφzcosφ=Fzrrx+Fzφφx+Fzzzx=FzrcosφFzφsinφr=Fzrry+Fzφφy+Fzzzy=Fzrsinφ+2Fzφcosφr

si298_e

from which we can reassemble the terms we require for Eq. 7.95 as

FzyFyzFxzFyx=Fzrsinφ+FzφcosφzFrzsinφFφzcosφ=FrzcosφFφzsinφFzrcosφ+Fzφsinφr

si299_e

(FzyFyz)cosφ+(FxzFzx)sinφ(FyzFzy)sinφ+(FxzFzx)cosφFyxFxy=Fzrsinφcosφ+Fzφcos2φrFzzsinφcosφFφzcos2φ+FzzsinφcosφFφzsin2φFzrsinφcosφ+Fzφsin2φr=Fzr(sinφcosφsinφcosφ)+Fzφ(cos2φr+sin2φr)+Frz(sinφcosφ+sinφcosφ)+Fφz(cos2φsin2φ)=1rFzφFφz=Frzsin2φ+FφzsinφcosφFzrsin2φFzφsinφcosφr+Frzcos2φFzzsinφcosφFzrcos2φ+Fzφsinφcosφr=Frz(sin2φ+cos2φ)+Fφz(sinφcosφsinφcosφ)+Frr(sin2φcos2φ)+Fzφ(sinφcosφr+sinφcosφr)=FrzFzr=Frr(sinφcosφsinφcosφ)+Fφr(cos2φ+sin2φ)+Frφ(sin2φrcos2φr)+Fr(sinφcosφr+sinφcosφr)+Fφφ(sinφcosφr+sinφcosφr)+Fφ(sin2φr+cos2φr)=Fφr1Frrφ+Fφr

si503_e

If we reinsert these equations into Eq. 7.95 we obtain

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset