Tutorial for Causal Inference 381
Acknowledgments
This work was supported, in part, by the National Institute of Allergy and Infectious
Diseases of the National Institutes of Health under award number R01AI074345. The content
is solely the responsibility of the authors and does not necessarily represent the officials views
of the National Institutes of Health. Maya Petersen is a recipient of a Doris Duke Clinical
Scientist Development Award.
References
1. J. Pearl. An introduction to causal inference. International Journal of Biostatistics,
6(2):Article 7, 2010.
2. E.H. Geng, D.V. Glidden, D.R. Bangsberg, M.B. Bwana, N. Musinguzi, D. Nash, J.Z.
Metcalfe et al. A causal framework for understanding the effect of losses to follow-up
on epidemiologic analyses in clinic-based cohorts: The case of HIV-infected patients on
antiretroviral therapy in Africa. American Journal of Epidemiology, 175(10):1080–1087,
2012.
3. M. van der Laan and S. Rose. Targeted Learning: Causal Inference for Observational
and Experimental Data. Springer, Berlin, Germany, 2011.
4. M.L. Petersen and M.J. van der Laan. Causal models and learning from data:
Integrating causal modeling and statistical estimation. Epidemiology, 25(3):418–426,
2014.
5. J. Ahern and A. Hubbard. A roadmap for estimating and interpreting population
intervention parameters. In J.M. Oakes and J.S. Kaufman, editors, Methods in Social
Epidemiology. Jossey-Bass, San Francisco, CA, 2014.
6. M.A. Hern´an, S. Hern´andez-D´ıaz, and J.M. Robins. A structural approach to selection
bias. Epidemiology, 15(5):615–625, 2004.
7. S. Rose. Big data and the future. Significance, 9(4):47–48, 2012.
8. G. Marcus and E. Davis. Eight (no, nine!) problems with big data. The New York
Times, A23, April 7, 2014.
9. S.D. Lawn and A.D. Harries. Reducing tuberculosis-associated early mortality in
antiretroviral treatment programmes in sub-Saharan Africa. AIDS, 25(12):1554–1555,
2011.
10. M.S. Cohen, Y.Q. Chen, M. McCauley, T. Gamble, M.C. Hosseinipour, N. Kumarasamy
et al. Prevention of HIV-1 infection with early antiretroviral therapy. The New England
Journal of Medicine, 365(6):493–505, 2011.
11. World Health Organization. Consolidated Guidelines on the Use of Antiretroviral
Drugs for Treating and Preventing HIV Infection. World Health Organization, Geneva,
Switzerland, 2013.
12. M. Egger, D.K. Ekouevi, C. Williams, R.E. Lyamuya, H. Mukumbi, P. Braitstein et al.
Cohort profile: The international epidemiological databases to evaluate AIDS (IeDEA)
in Sub-Saharan Africa. International Journal of Epidemiology, 41(5):1256–1264, 2011.
382 Handbook of Big Data
13. University of California, San Francisco. Sustainable East Africa Research in Community
Health (SEARCH). http://clinicaltrials.gov/show/NCT01864603, 2013.
14. J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, New
York, 2000. (Second edition, 2009.)
15. J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo,
CA, 1988.
16. A. Goldberger. Structural equation models in the social sciences. Econometrica: Journal
of the Econometric Society, 40:979–1001, 1972.
17. O. Duncan. Introduction to Structural Equation Models. Academic Press, New York,
1975.
18. J. Neyman. Sur les applications de la theorie des probabilites aux experiences agricoles:
Essai des principes (in Polish). English translation by D.M. Dabrowska and T.P. Speed
(1990). Statistical Science, 5:465–480, 1923.
19. D.B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized
studies. Journal of Educational Psychology, 66(5):688–701, 1974.
20. P.W. Holland. Statistics and causal inference. Journal of the American Statistical
Association, 81(396):945–960, 1986.
21. J. Pearl. Causal diagrams for empirical research. Biometrika, 82:669–710, 1995.
22. M.A. Heran, E. Lanoy, D. Costagliola, and J.M. Robins. Comparison of dynamic
treatment regimes via inverse probability weighting. Basic and Clinical Pharmacology
and Toxicology, 98(3):237–242, 2006.
23. M.J. van der Laan and M.L. Petersen. Causal effect models for realistic individualized
treatment and intention to treat rules. International Journal of Biostatistics, 3(1):
Article 3, 2007.
24. L.E. Cain, J.M. Robins, E. Lanoy, R. Logan, D. Costagliola, and M.A. Hern´an. When
to start treatment? A systematic approach to the comparison of dynamic regimes using
observational data. International Journal of Biostatistics, 6(2):Article 18, 2010.
25. M.L. Petersen and M.J. van der Laan. Case study: Longitudinal HIV cohort data.
In M.J. van der Laan and S. Rose, editors, Targeted Learning: Causal Inference for
Observational and Experimental Data. Springer, New York, 397–417, 2011.
26. I. D´ıaz Mu˜noz and M. van der Laan. Population intervention causal effects based on
stochastic interventions. Biometrics, 68(2):541–549, 2012.
27. J.M. Robins. A new approach to causal inference in mortality studies with sustained
exposure periods—Application to control of the healthy worker survivor effect. Mathe-
matical Modeling, 7:1393–1512, 1986.
28. M.A. Hern´an and T.J. VanderWeele. Compound treatments and transportability of
causal inference. Epidemiology, 22:368–377, 2011.
29. M.L. Petersen. Compound treatments, transportability, and the structural causal
model: The power and simplicity of causal graphs. Epidemiology, 22:378–381, 2011.
Tutorial for Causal Inference 383
30. J. Pearl and E. Bareinboim. Transportability across studies: A formal approach.
Technical Report R-372, Computer Science Department, University of California, Los
Angeles, CA, 2013.
31. J.M. Robins, M.A. Hern´an, and B. Brumback. Marginal structural models and causal
inference in epidemiology. Epidemiology, 11(5):550–560, 2000.
32. R. Neugebauer and M.J. van der Laan. Nonparametric causal effects based on marginal
structural models. Journal of Statistical Planning and Inference, 137(2):419–434, 2007.
33. M.J. van der Laan. Estimation based on case-control designs with known prevalence
probability. International Journal of Biostatistics, 4(1):Article 17, 2008.
34. S. Rose and M.J. van der Laan. Why match? Investigating matched case-control study
designs with causal effect estimation. International Journal of Biostatistics, 5(1):Article
1, 2009.
35. D. Rubin. Randomization analysis of experimental data: The Fisher randomization test
comment. Journal of the American Statistical Association, 75(371):591–593, 1980.
36. M.J. van der Laan. Causal inference for a population of causally connected units.
Journal of Causal Inference, 2(1):13–74, 2014.
37. M.L. Petersen, K.E. Porter, S. Gruber, Y. Wang, and M.J. van der Laan. Diagnosing
and responding to violations in the positivity assumption. Statistical Methods in Medical
Research, 21(1):31–54, 2012.
38. E.C. Polley, S. Rose, and M.J. van der Laan. Super learner. In M.J. van der Laan
and S. Rose, editors, Targeted Learning: Causal Inference for Observational and
Experimental Data. Springer, New York, 43–66, 2011.
39. M.J. van der Laan, E.C. Polley, and A.E. Hubbard. Super learner. Statistical Applica-
tions in Genetics and Molecular Biology, 6(1):25, 2007.
40. M.J. van der Laan and D.B. Rubin. Targeted maximum likelihood learning. Interna-
tional Journal of Biostatistics, 2(1):Article 11, 2006.
41. S. Rose and M.J. van der Laan. Why TMLE? In M.J. van der Laan and S. Rose,
editors, Targeted Learning: Causal Inference for Observational and Experimental Data.
Springer, New York, 2011.
42. K.E. Porter, S. Gruber, M.J. van der Laan, and J.S. Sekhon. The relative performance
of targeted maximum likelihood estimators. International Journal of Biostatistics,
7(1):Article 31, 2011.
43. O.M. Stitelman, V. De Gruttola, and M.J. van der Laan. A general implementation of
tmle for longitudinal data applied to causal inference in survival analysis. International
Journal of Biostatistics, 8(1), 2012. doi:10.1515/1557-4679.1334.
44. S. Gruber and M. van der Laan. Targeted maximum likelihood estimation. R package
version 1.2.0-1. Available at http://CRAN.R-project.org/package=tmle, 2012.
45. J. Schwab, S. Lendle, M. Petersen, and M. van der Laan. LTMLE: Longitudinal Targeted
Maximum Likelihood Estimation. R package version 0.9.3-1. Available at http://CRAN.
R-project.org/package=ltmle, 2014.
384 Handbook of Big Data
46. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2014.
47. M.A. Hern´an and J.M. Robins. Estimating causal effects from epidemiological data.
Journal of Epidemiology and Community Health, 60(7):578–586, 2006.
48. J.M. Robins and M.A. Hern´an. Estimation of the causal effects of time-varying
exposures. In G. Fitzmaurice, M. Davidian,G.Verbeke,andG.Molenberghs,editors,
Longitudinal Data Analysis, chapter 23. Chapman & Hall/CRC Press, Boca Raton, FL,
2009.
49. M.L. Petersen, Y. Wang, M.J. van der Laan, and D.R. Bangsberg. Assessing the
effectiveness of antiretroviral adherence interventions. Using marginal structural models
to replicate the findings of randomized controlled trials. Journal of Acquired Immune
Deficiency Syndromes, 43(Suppl 1):S96–S103, 2006.
50. J.M. Robins. Robust estimation in sequentially ignorable missing data and causal
inference models. In 1999 Proceedings of the American Statistical Association.American
Statistical Association, Alexandria, VA, 2000, pp. 6–10.
51. M.J. van der Laan and J.M. Robins. Unified Methods for Censored Longitudinal Data
and Causality. Springer-Verlag, New York, 2003.
52. L. Balzer, J. Ahern, S. Galea, and M.J. van der Laan. Estimating effects on rare
outcomes: Knowledge is power. Epidemiologic Methods, In Press, 2015. Technical report
available at http://biostats.bepress.com/ucbbiostat/paper310/, 2014.
53. L.M. Bodnar, M. Davidian, A.M. Siega-Riz, and A.A. Tsiatis. Marginal structural
models for analyzing causal effects of time-dependent treatments: An application in
perinatal epidemiology. American Journal of Epidemiology, 159(10):926–934, 2004.
54. M.L. Petersen, J. Schwab, S. Gruber, N. Blaser, M. Schomaker, and M.J. van der Laan.
Targeted maximum likelihood estimation for dynamic and static longitudinal marginal
structural working models. Journal of Causal Inference, 2(2):147–185, 2014.
55. J. Robins, A. Rotnitzky, and D. Scharfstein. Sensitivity analysis for selection bias and
unmeasured confounding in missing data and causal inference models. In M. Halloran
and D. Berry, editors, Statistical Models in Epidemiology: The Environment and Clinical
Trials. Springer, New York, 1999.
56. K. Imai, L. Keele, and T. Yamamoto. Identification, inference, and sensitivity analysis
for causal mediation effects. Statistical Science, 25:51–71, 2010.
57. T.J. VanderWeele and O.A. Arah. Bias formulas for sensitivity analysis of unmeasured
confounding for general outcomes, treatments, and confounders. Epidemiology, 22:
42–52, 2011.
58. I. D´ıaz and M. van der Laan. Sensitivity analysis for causal inference under unmeasured
confounding and measurement error problems. International Journal of Biostatistics,
9:149–160, 2013.
59. M.A. Hern´an, B. Brumback, and J.M. Robins. Marginal structural models to estimate
the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology,
11(5):561–570, 2000.
Tutorial for Causal Inference 385
60. S.R. Cole and M.A. Hern´an. Constructing inverse probability weights for marginal
structural models. American Journal of Epidemiology, 168(6):656–664, 2008.
61. J.M. Robins, L. Orellana, and A. Rotnitzky. Estimation and extrapolation of optimal
treatment and testing strategies. Statistics in Medicine, 27(23):4678–4721, 2008.
62. S.L. Taubman, J.M. Robins, M.A. Mittleman, and M.A. Hern´an. Intervening on
risk factors for coronary heart disease: An application of the parametric g-formula.
International Journal of Epidemiology, 38(6):1599–1611, 2009.
63. E.C. Polley and M.J. van der Laan. Super learning for right-censored data. In
M.J. van der Laan and S. Rose, editors, Targeted Learning: Causal Inference for
Observational and Experimental Data. Springer, New York, 249–258, 2011.
64. K.L. Moore and M.J. van der Laan. RCTs with time-to-event outcomes. In M.J. van der
Laan and S. Rose, editors, Targeted Learning: Causal Inference for Observational and
Experimental Data. Springer, New York, 259–269, 2011.
65. O.M. Stitelman and M.J. van der Laan. Collaborative targeted maximum likelihood for
time-to-event data. International Journal of Biostatistics, 6(1):Article 21, 2010.
66. M.J. van der Laan and S. Gruber. Targeted minimum loss based estimation of causal
effects of multiple time point interventions. International Journal of Biostatistics, 8(1),
2012. doi:10.1515/1557-4679.1370.
67. M.E. Schnitzer, E.E. Moodie, and R.W. Platt. Targeted maximum likelihood estimation
for marginal time-dependent treatment effects under density misspecification. Biostatis-
tics, 14(1):1–14, 2013.
68. M.E. Schnitzer, M.J. van der Laan, E.E. Moodie, and R.W. Platt. Effect of breastfeeding
on gastrointestinal infection in infants: A targeted maximum likelihood approach for
clustered longitudinal data. Annals of Applied Statistics, 8(2):703–725, 2014.
69. A.L. Decker, A. Hubbard, C.M. Crespi, E.Y.W. Seto, and M.C. Wang. Semiparametric
estimation of the impacts of longitudinal interventions on adolescent obesity using
targeted maximum-likelihood: Accessible estimation with the ltmle package. Journal
of Causal Inference, 2(1):95–108, 2014.
70. O. Bembom and M.J. van der Laan. A practical illustration of the importance of realistic
individualized treatment rules in causal inference. Electronic Journal of Statistics,
1:574–596, 2007.
71. M.M. Kitahata, S.J. Gange, A.G. Abraham, B. Merriman, M.S. Saag, A.C. Justice
et al. Effect of early versus deferred antiretroviral therapy for HIV on survival. The
New England Journal of Medicine, 360(18):1815–1826, 2009.
72. M.A. Hern´an and J.M. Robins. Comment on: Early versus deferred antiretroviral
therapy for HIV on survival. The New England Journal of Medicine, 361(8):823–824,
2009.
73. M.L. Petersen, S.E. Sinisi, and M.J. van der Laan. Estimation of direct causal effects.
Epidemiology, 17(3):276–284, 2006.
74. M.J. van der Laan and M.L. Petersen. Direct effect models. International Journal of
Biostatistics, 4(1):Article 23, 2008.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset