References

[1] Bogue R. Nanosensors: a review of recent research. Sens. Rev. 2009;29(4):310315.

[2] Cullum BM, Griffin GD, Vo-Dinh T. Nanosensors: design and application to site-specific cellular analyses. Fourth Conference on Biomedical Diagnostic, Guidance, and Surgical-Assist Systems, January; 2002 San Jose, CA. 2021.

[3] Bogue R. Nanosensors: a review of recent progress. Sens. Rev. 2008;28(1):1217.

[4] Lim T-C, Ramakrishna S. A conceptual review of nanosensors. Zeitschrift Fur Naturforschung A. 2006;61(7–8):402412.

[5] Velasco-Garcia MN, Mottram T. Biosensor technology addressing agricultural problems. Biosyst. Eng. 2003;84(1):112.

[6] Swierczewska M, et al. High-sensitivity nanosensors for biomarker detection. Chem. Soc. Rev. 2012;41(7):26412655.

[7] Manzoli A, et al. Low-cost gas sensors produced by the graphite line-patterning technique applied to monitoring banana ripeness. Sensors. 2011;11(6):64256434.

[8] Lupan O, et al. Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sens. Actuators B. 2010;144(1):5666.

[9] Tamaki J, et al. Ultrahigh-sensitive WO3 nanosensor with interdigitated Au nano-electrode for NO2 detection. Sens. Actuators B. 2008;132(1):234238.

[10] T. Zhang, et al. A gas nanosensor unaffected by humidity, Nanotechnology 20 (25) (2009) 255501.

[11] Cui Y, et al. Biomimetic peptide nanosensors. Acc. Chem. Res. 2012;45(5):696704.

[12] Steffens C, et al. Development of gas sensors coatings by polyaniline using pressurized fluid. Sens. Actuators B. 2012;171–172(0):627633.

[13] P. Gouma, M. Stanacevic, Selective nanosensor array microsystem for exhaled breath analysis, in: G. Kaltsas,C.e. Tsamis (Eds.). Eurosensors Xxv, vol. 25, Procedia Engineering, 2011.

[14] Deda DK, et al. Atomic force microscopy-based molecular recognition: a promising alternative to environmental contaminants detection. Méndez-Vilas A, ed. Current Microscopy Contributions to Advances in Science and Technology, vol. 2. Badajoz: Formatex Research Center; 2012:13371348.

[15] da Silva ACN, et al. Nanobiosensors exploiting specific interactions between an enzyme and herbicides in atomic force spectroscopy. J. Nanosci. Nanotechnol. 2014;14:66786684.

[16] Sisquella X, et al. A single-molecule force spectroscopy nanosensor for the identification of new antibiotics and antimalarials. FASEB J. 2010;24(11):42034217.

[17] Ferraz RM, et al. High-throughput, functional screening of the anti-HIV-1 humoral response by an enzymatic nanosensor. Mol. Immunol. 2006;43(13):21192123.

[18] T. Vo-Dinh, IEEE, Nanosensors and Nanoprobes for Environmental Health Sensing and Biomedical Screening, 2008 Digest of the Leos Summer Topical Meetings, 2008, pp. 59–60.

[19] Balaconis MK, Cark HA. Biodegradable optode-based nanosensors for in vivo monitoring. Anal. Chem. 2012;84(13):57875793.

[20] Wu Z, et al. Well-defined nanoclusters as fluorescent nanosensors: a case study on Au25(SG)18. Small. 2012;8(13):20282035.

[21] Brasuel M, et al. Fluorescent nanosensors for intracellular chemical analysis: decyl methacrylate liquid polymer matrix and ion exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells. Anal. Chem. 2001;73(10):22212228.

[22] Dubach JM, Harjes DI, Clark HA. Fluorescent ion-selective nanosensors for intracellular analysis with improved lifetime and size. Nano Lett. 2007;7(6):18271831.

[23] Sumner JP, et al. Cu+- and Cu2+-sensitive PEBBLE fluorescent nanosensors using DsRed as the recognition element. Sens. Actuators B. 2006;113(2):760767.

[24] Bompart M, De Wilde Y, Haupt K. Chemical nanosensors based on composite molecularly imprinted polymer particles and surface-enhanced Raman scattering. Adv. Mater. 2010;22(21):23432348.

[25] Barbillon G, et al. Biological and chemical gold nanosensors based on localized surface plasmon resonance. Gold Bull. 2007;40(3):240244.

[26] Shtykov SN, Rusanova TY. Nanomaterials and nanotechnologies in chemical and biochemical sensors: capabilities and applications. Russ. J. Gen. Chem. 2008;78(12):25212531.

[27] Shahinpoor M. Ionic polymeric conductor nanocomposites (IPCNCs) as distributed nanosensors and nanoactuators. Bioinspir. Biomim. 2008;3(3):035003.

[28] Gao J, Xu B. Applications of nanomaterials inside cells. Nano Today. 2009;4(1):3751.

[29] Gebinoga M, et al. Nanosensors for label-free measurement of sodium ion fluxes of neuronal cells. Mater. Sci. Eng. B. 2010;169(1–3):182185.

[30] Koh I, Josephson L. Magnetic nanoparticle sensors. Sensors. 2009;9(10):81308145.

[31] Kaittanis C, et al. The assembly state between magnetic nanosensors and their targets orchestrates their magnetic relaxation response. J. Am. Chem. Soc. 2011;133(10):36683676.

[32] Colombo M, et al. Femtomolar detection of autoantibodies by magnetic relaxation nanosensors. Anal. Biochem. 2009;392(1):96102.

[33] Liang G, et al. Magnetic nanosensors for highly sensitive and selective detection of bacillus Calmette-Guerin. Analyst. 2012;137(3):675679.

[34] Aylott JW. Optical nanosensors—an enabling technology for intracellular measurements. Analyst. 2003;128(4):309312.

[35] Cullum BM, Vo-Dinh T. The development of optical nanosensors for biological measurements. Trends Biotechnol. 2000;18(9):388393.

[36] Ast C, et al. Optical oxygen micro- and nanosensors for plant applications. Sensors. 2012;12(6):70157032.

[37] Connolly C. Nanosensor developments in some European universities. Sens. Rev. 2008;28(1):1821.

[38] Xue L, et al. Carboxylate-modified squaraine dye doped silica fluorescent pH nanosensors. Nanotechnology. 2010;21(21):215502.

[39] Benjaminsen RV, et al. Evaluating nanoparticle sensor design for intracellular pH measurements. ACS Nano. 2011;5(7):58645873.

[40] He X, et al. Research of the relationship of intracellular acidification and apoptosis in Hela cells based on pH nanosensors. Sci. China Ser. B. 2007;50(2):258265.

[41] Doussineau T, Trupp S, Mohr GJ. Ratiometric pH-nanosensors based on rhodamine-doped silica nanoparticles functionalized with a naphthalimide derivative. J. Colloid Interface Sci. 2009;339(1):266270.

[42] Jamil AKM, et al. Molecular recognition of 2,4,6-trinitrotoluene by 6-aminohexanethiol and surface-enhanced Raman scattering sensor. Sens. Actuators B. 2015;221:273280.

[43] Kneipp J, et al. Novel optical nanosensors for probing and imaging live cells. Nanomedicine. 2010;6(2):214226.

[44] Ly NH, Joo SW. Silver nanoparticle-enhanced resonance Raman sensor of chromium(III) in seawater samples. Sensors. 2015;15(5):1008810099.

[45] Nowak-Lovato KL, Wilson BS, Rector KD. Sers nanosensors that report pH of endocytic compartments during Fc epsilon RI transit. Anal. Bioanal. Chem. 2010;398(5):20192029.

[46] Elostua C, et al. Volatile alcoholic compounds fibre optic nanosensor. Sens. Actuators B. 2006;115(1):444449.

[47] Liu CY, et al. Preparation of surface-enhanced Raman Scattering(SERS)-active optical fiber sensor by laser-induced Ag deposition and its application in bioidentification of biotin/avidin. Chem. Res. Chin. Univ. 2015;31(1):2530.

[48] Yan Q, et al. Dual-sensing porphyrin-containing copolymer nanosensor as full-spectrum colorimeter and ultra-sensitive thermometer. Chem. Commun. 2010;46(16):27812783.

[49] Mannoor MS, et al. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 2012;3:763.

[50] Billingsley K, et al. Fluorescent nano-optodes for glucose detection. Anal. Chem. 2010;82(9):37073713.

[51] Dubach JM, et al. In vivo sodium concentration continuously monitored with fluorescent sensors. Integr. Biol. 2011;3(2):142148.

[52] Bashir R. BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 2004;56(11):15651586.

[53] Arroyo-Hernández M, et al. Micro and Nanomechanical Biosensors. Nanomedicine and Nanorobotics: Handbook of Nanophysics. Boca Raton: CRC Press; 2010:116.

[54] Zhao G, Wang H, Liu G. Advances in biosensor-based instruments for pesticide residues rapid detection. Int. J. Electrochem. Sci. 2015;10(12):97909807.

[55] Steffens C, et al. Atomic force microscopy as a tool applied to nano/biosensors. Sensors. 2012;12(6):82788300.

[56] Burnham NA, Colton RJ, Pollock HM. Interpretation of force curves in force microscopy. Nanotechnology. 1993;4:6480.

[57] Garcia R, Perez R. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 2002;47(6–8):197301.

[58] Franca EF, et al. Designing an enzyme-based nanobiosensor using molecular modeling techniques. Phys. Chem. Chem. Phys. 2011;13(19):88948899.

[59] Bizzarri AR, Cannistraro S. The application of atomic force spectroscopy to the study of biological complexes undergoing a biorecognition process. Chem. Soc. Rev. 2010;39(2):734749.

[60] Bizzarri AR, Cannistraro S. The application of atomic force spectroscopy to the study of biological complexes undergoing a biorecognition process. Chem. Soc. Rev. 2010;39(2):734749.

[61] Hinterdorfer P, et al. A mechanistic study of the dissociation of individual antibody–antigen pairs by atomic force microscopy. Nanobiology. 1998;4:177188.

[62] Moraes AD, et al. Evidences of detection of atrazine herbicide by atomic force spectroscopy: a promising tool for environmental sensoring. Acta Microsc. 2015;24(1):5363.

[63] Smith DA, et al. Chemical force microscopy: applications in surface characterization of natural hydroxyapatite. Anal. Chim. Acta. 2003;479(1):3957.

[64] Singamaneni S, et al. Bimaterial microcantilevers as a hybrid sensing platform. Adv. Mater. 2008;20(4):653680.

[65] Koshland DE. The key-lock theory and the induced fit theory. Angew. Chem. Int. Ed. Engl. 1995;33(23–24):23752378.

[66] Stoddard BL, Koshland DE. Prediction of the structure of a receptor protein complex using a binary docking method. Nature. 1992;358(6389):774776.

[67] Maver T, et al. Functionalization of AFM tips for use in force spectroscopy between polymers and model surfaces. Mater. Tehnol. 2011;45(3):205211.

[68] Cappella B, Dietler G. Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 1999;34(1–3):1104.

[69] Butt HJ, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 2005;59(1–6):1152.

[70] Leite FL, et al. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy. Int. J. Mol. Sci. 2012;13(10):1277312856.

[71] Weisenhorn AL, et al. Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys. Rev. B. 1992;45(19):1122611232.

[72] Weisenhorn AL, et al. Forces in atomic force microscopy in air and water. Appl. Phys. Lett. 1989;54(26):26512653.

[73] Mo Y, Turner KT, Szlufarska I. Friction laws at the nanoscale. Nature. 2009;457(7233):11161119.

[74] Heuberger M, Dietler G, Schlapbach L. Elastic deformations of tip and sample during atomic force microscope measurements. J. Vacuum Sci. Technol. B. 1996;14(2):12501254.

[75] Poon B, Rittel D, Ravichandran G. An analysis of nanoindentation in linearly elastic solids. Int. J. Solids Struct. 2008;45(24):60186033.

[76] Maugis D, Barquins M. Adhesive contact of a conical punch on an elastic half-space. J. Phys. Lett. 1981;42(5):L95L97.

[77] Vallet D, Barquins M. Adhesive contact and kinetics of adherence of a rigid conical punch on an elastic half-space (natural rubber). Comput. Methods Contact Mech. V. 2001;5:4153.

[78] Wu X-F, Dzenis YA. Adhesive contact in filaments. J. Phys. D. 2007;40(14):42764280.

[79] Capella B, et al. Force-distance curves by AFM—a powerful technique for studying surface interactions. IEEE Eng. Med. Biol. Mag. 1997;16(2):5865.

[80] Bell GI. Theoretical-models for the specific adhesion of cells to cells or to surfaces. Adv. Appl. Probab. 1980;12(3):566567.

[81] Evans E. Probing the relation between force—lifetime—and chemistry in single molecular bonds. Ann. Rev. Biophys. Biomol. Struct. 2001;30:105128.

[82] Evans E, Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys. J. 1997;72(4):15411555.

[83] Konda SSM, et al. Chemical reactions modulated by mechanical stress: Extended Bell theory. J. Chem. Phys. 2011;135(16):164103.

[84] Beaussart A, et al. Chemical force microscopy of stimuli-responsive adhesive copolymers. Nanoscale. 2014;6(1):565571.

[85] Noy A, Vezenov DV, Lieber CM. Chemical force microscopy. Ann. Rev. Mater. Sci. 1997;27:381421.

[86] Alvarez M, et al. Development of nanomechanical biosensors for detection of the pesticide DDT. Biosens. Bioelectron. 2003;18(5–6):649653.

[87] Kim H, et al. Characterization of mixed self-assembled monolayers for immobilization of streptavidin using chemical force microscopy. Ultramicroscopy. 2008;108(10):11401143.

[88] Kim H, et al. Selective immobilization of proteins on gold dot arrays and characterization using chemical force microscopy. J. Colloid Interface Sci. 2009;334(2):161166.

[89] Suri CR, et al. Label-free ultra-sensitive detection of atrazine based on nanomechanics. Nanotechnology. 2008;19(23):235502.

[90] Waggoner PS, Craighead HG. Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab on a Chip. 2007;7(10):12381255.

[91] Seo Y, Jhe W. Atomic force microscopy and spectroscopy. Rep. Prog. Phys. 2008;71(1):016101.

[92] Awsiuk K, et al. Spectroscopic and microscopic characterization of biosensor surfaces with protein/amino-organosilane/silicon structure. Colloids Surf. B. 2012;90:159168.

[93] da Silva ACN, et al. Nanobiosensors based on chemically modified AFM probes: a useful tool for metsulfuron-methyl detection. Sensors. 2013;13(2):14771489.

[94] Headrick JE, Berrie CL. Alternative method for fabricating chemically functionalized AFM tips: silane modification of HF-treated Si3N4 probes. Langmuir. 2004;20(10):41244131.

[95] Micic M, et al. Scanning electron microscopy studies of protein-functionalized atomic force microscopy cantilever tips. Scanning. 1999;21(6):394397.

[96] Berquand A, et al. Antigen binding forces of single antilysozyme Fv fragments explored by atomic force microscopy. Langmuir. 2005;21(12):55175523.

[97] Fiorini M, et al. Chemical force microscopy with active enzymes. Biophys. J. 2001;80(5):24712476.

[98] Volcke C, et al. Plasma functionalization of AFM tips for measurement of chemical interactions. J. Colloid Interface Sci. 2010;348(2):322328.

[99] Long Z, Hill K, Sepaniak MJ. Aluminum oxide nanostructured microcantilever arrays for nanomechanical-based sensing. Anal. Chem. 2010;82(10):41144121.

[100] Drew ME, et al. Nanocrystalline diamond AFM tips for chemical force spectroscopy: fabrication and photochemical functionalization. J. Mater. Chem. 2012;22(25):1268212688.

[101] Janissen R, Oberbarnscheidt L, Oesterhelt F. Optimized straight forward procedure for covalent surface immobilization of different biomolecules for single molecule applications. Colloids Surf. B. 2009;71(2):200207.

[102] Lu RP, et al. Scanning spreading resistance microscopy current transport studies on doped III-V semiconductors. J. Vacuum Sci. Technol. B. 2002;20(4):16821689.

[103] Nalage SR, et al. Development of Fe2O3 sensor for NO2 detection. Chauhan AK, Murli C, et al. eds. Solid State Physics, vol. 57, 1512. Melville: American Institute of Physics; 2013:504505: (AIP Conference Proceedings).

[104] Fatikow S, et al. Automated handling of bio-nanowires for nanopackaging. IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems; 2010 New York. 39994004.

[105] Lin JJ, et al. Characteristics of polysilicon wire glucose sensors with a surface modified by silica nanoparticles/gamma–APTES nanocomposite. Sensors. 2011;11(3):27962808.

[106] Leite FL, et al. Nanoneurobiophysics: new challenges for diagnosis and therapy of neurologic disorders. Nanomedicine. 2015;10:34173419.

[107] Garcia PS, et al. A nanobiosensor based on 4-hydroxyphenylpyruvate dioxygenase enzyme for mesotrione detection. IEEE Sens. J. 2015;15:21062113.

[108] Bueno CC, et al. Nanobiosensor for diclofop detection based on chemically modified AFM probes. IEEE Sens. J. 2014;14:14671475.

[109] Amarante AM, et al. Modeling the coverage of an AFM tip by enzymes and its application in nanobiosensors. J. Mol. Graph. Model. 2014;53:100104.

[110] Steffens C, et al. Bio-inspired sensor for insect pheromone analysis based on polyaniline functionalized AFM cantilever sensor. Sens. Actuators B. 2014;191:643649.

[111] Deda DK, et al. The use of functionalized AFM tips as molecular sensors in the detection of pesticides. Mater. Res. 2013;16:683687.

[112] de Oliveira GS, et al. Molecular modeling of enzyme attachment on AFM probes. J. Mol. Graph. Model. 2013;45:128136.

[113] Romig AD, Dugger MT, Mcwhorter PJ. Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability. Acta Mater. 2003;51(19):58375866.

[114] Carrascosa LG, et al. Nanomechanical biosensors: a new sensing tool. Trends Anal. Chem. 2006;25(3):196206.

[115] Lang H, Hegner M, Gerber C, Nanomechanical cantilever array sensors. Bhushan B, ed. Springer Handbook of NanotechnologyBerlin, Heidelberg: Springer; 2010:427452: (Chapter 15).

[116] Lang H, Gerber C, Microcantilever sensors. Samorì P, ed. STM and AFM Studies on (Bio)molecular Systems: Unravelling the Nanoworld, vol. 285. Berlin, Heidelberg: Springer; 2008:127: (Chapter 28, Topics in Current Chemistry).

[117] Steffens C, et al. Atomic force microscope microcantilevers used as sensors for monitoring humidity. Microelectron. Eng. 2014;113:8085.

[118] V. Tabard-Cossa, Microcantilever Actuation Generated by Redox-Induced Surface Stress, 2005, 169 (Thesis Doctor of Philosophy).

[119] Battiston FM, et al. A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout. Sens. Actuators B. 2001;77(1–2):122131.

[120] Wang J, Qu X. Recent progress in nanosensors for sensitive detection of biomolecules. Nanoscale. 2013;5(9):35893600.

[121] Wang C, et al. Ultrasensitive biochemical sensors based on microcantilevers of atomic force microscope. Anal. Biochem. 2007;363(1):111.

[122] Boisen A, et al. Cantilever-like micromechanical sensors. Rep. Prog. Phys. 2011;74(3):036101.

[123] Binning G, et al. Atomic resolution with atomic force microscope. Europhys. Lett. 1987;3:12811286.

[124] Thundat T, et al. Detection of mercury-vapor using resonating microcantilevers. Appl. Phys. Lett. 1995;66(13):16951697.

[125] Fagan BC, et al. Modification of micro-cantilever sensors with sol–gels to enhance performance and immobilize chemically selective phases. Talanta. 2000;53(3):599608.

[126] Ji HF, et al. A novel self-assembled monolayer (SAM) coated microcantilever for low level caesium detection. Chem. Commun. 2000;6:457458.

[127] Pinnaduwage LA, et al. Detection of 2,4-dinitrotoluene using microcantilever sensors. Sens. Actuators B. 2004;99(2–3):223229.

[128] Long Z, et al. Landfill siloxane gas sensing using differentiating, responsive phase coated microcantilever arrays. Anal. Chem. 2009;81(7).

[129] Lang HP, et al. Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology. Nanotechnology. 2002;13(5):R29R36.

[130] Chen GY, et al. Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J. Appl. Phys. 1995;77(8):36183622.

[131] Betts TA, et al. Selectivity of chemical sensors based on micro-cantilevers coated with thin polymer films. Anal. Chim. Acta. 2000;422(1):8999.

[132] Steffens C, et al. Microcantilever sensors coated with a sensitive polyaniline layer for detecting volatile organic compounds. J. Nanosci. Nanotechnol. 2014;14(9):67186722.

[133] Wu GH, et al. Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Natl. Acad. Sci. USA. 2001;98(4):15601564.

[134] Liu K-W, Biswal SL. Probing insertion and solubilization effects of lysolipids on supported lipid bilayers using microcantilevers. Anal. Chem. 2011;83(12):47944801.

[135] Seena V, et al. Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection. Nanotechnology. 2011;22(29):295501.

[136] Zhang YF, et al. Detection of CrO42—using a hydrogel swelling microcantilever sensor. Anal. Chem. 2003;75(18):47734777.

[137] Steffens C, et al. Microcantilever sensors coated with doped polyaniline for the detection of water vapor. Scanning. 2013;35(4):16.

[138] Fragakis J, et al. Simulation of capacitive type bimorph humidity sensors. Nassiopoulou AG, Papanikolaou N, et al. eds. Second Conference on Microelectronics, Microsystems and Nanotechnology, vol. 10. Bristol: IOP Publishing Ltd; 2005:305308: (Journal of Physics Conference Series).

[139] Thundat T, et al. Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl. Phys. Lett. 1994;64(21):28942896.

[140] Ma R-H, et al. Microcantilever-based weather station for temperature, humidity and flow rate measurement. Microsyst. Technol. 2008;14(7):971977.

[141] Singamaneni S, et al. Polymer-silicon flexible structures for fast chemical vapor detection. Adv. Mater. 2007;19(23):42484255.

[142] Kim BH, et al. Multicomponent analysis and prediction with a cantilever array based gas sensor. Sens. Actuators B. 2001;78(1–3):1218.

[143] Lahav M, et al. Redox activation of a polyaniline-coated cantilever: an electro-driven microdevice. Angew. Chem. Int. Ed. 2001;40(21):40954097.

[144] Wu GH, et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 2001;19(9):856860.

[145] Ilic B, et al. Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Lett. 2005;5(5):925929.

[146] Lee SM, et al. Protocol for the use of a silica nanoparticle-enhanced microcantilever sensor-based method to detect HBV at femtomolar concentrations. Methods Mol. Biol. 2012;903:283293.

[147] Standards, N.C.F.C.L. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, vol. 4. Wayne, PA: National Committee for Clinical Laboratory Standards; 1997: M7–A4.

[148] Gfeller KY, Nugaeva N, Hegner M. Rapid biosensor for detection of antibiotic-selective growth of Escherichia coli. Appl. Environ. Microbiol. 2005;71(5):26262631.

[149] Moises S, Schäferling M. Toxin immunosensors and sensor arrays for food quality control. Bioanal. Rev. 2009;1(1):73104.

[150] Nugaeva N, et al. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens. Bioelectron. 2005;21(6):849856.

[151] Persaud K, Dodd G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature. 1982;299(5881):352355.

[152] Gardner JW, Bartlett PN. A brief history of electronic noses. Sens. Actuat. B: Chem. 1994;18:211220.

[153] Steffens C, et al. Gas sensors development using supercritical fluid technology to detect the ripeness of bananas. J. Food Eng. 2010;101(4):365369.

[154] Sankaran S, et al. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010;72(1):113.

[155] Brezmes J, et al. Fruit ripeness monitoring using an Electronic Nose. Sens. Actuators B. 2000;69(3):223229.

[156] Pan LQ, et al. Early detection and classification of pathogenic fungal disease in post-harvest strawberry fruit by electronic nose and gas chromatography-mass spectrometry. Food Res. Int. 2014;62:162168.

[157] Privorotskaya NL, King WP. The mechanics of polymer swelling on microcantilever sensors. Microsyst. Technol. 2009;15(2):333340.

[158] Bashir R, et al. Micromechanical cantilever as an ultrasensitive pH microsensor. Appl. Phys. Lett. 2002;81(16):30913093.

[159] Cheney CP, et al. In vivo wireless ethanol vapor detection in the Wistar rat. Sens Actuators B. 2009;138(1):264269.

[160] Shu W, et al. Highly specific labe-free protein detection from lysed cells using internally referenced microcantilever sensors. Biosens. Bioelectron. 2008;24:233237.

[161] Raorane DA, et al. Quantitative and label-free technique for measuring protease activity and inhibition using a microfluidic cantilever array. Nano Lett. 2008;8(9):29682974.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset