References

[1] M. Sampietro, Curso de Elettronica a semiconduttori organici: Principi, dispositivi ed appli-cazioni. Aula Aspetti base dei semiconduttori organici, Politecnico di Milano, Milão, Itália. Maio 2009. http://home.dei.polimi.it/sampietr/ESO/index.html

[2] Shirakawa H, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977; 578: doi: 10.1037/C39770000578.

[3] Skotheim TA. Handbook of Conducting Polymers, vols. 1 and 2 New York: Marcel Dekker; 1986.

[4] Srinivasan KSV. Macromolecules: New Frontiers, vols. 1 and 2 New Delhi: Allied Publishers; 1998.

[5] Kao KC, Hwang W. Electrical Transport in Solids. Oxford: Pergamon Press; 1981.

[6] Kelley TW, et al. High performance organic thin film transistors. Mater. Res. Soc. Symp. Proc. 2003;771:L6.5.1.

[7] Singh THB, et al. Enhanced mobility of organic field-effect transistors with epitaxially grown C60 film by in-situ heat treatment of the organic dielectric. Mater. Res. Soc. Symp. Proc. 2005;871E:I4.9.1I4.9.8.

[8] Sze SM. Physics of Semiconductor Devices. second ed. New York: John Wiley & Sons; 1981: 880 p.

[9] Reineke S, et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature. 2009;459:234238.

[10] Park SH, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photon. 2009;3:297302.

[11] Stallinga P. General concept. Electrical Characterization of Organic Electronic Materials and Devices. Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd; 2009:138: (Chapter 1).

[12] Jeong SH, Song CK, Yi M. Capacitance enhancement in the accumulation region of C-V characteristics in metal-insulator-semiconductor capacitors consisting of pentacene and poly(4-vinylphenol). Appl. Phys. Lett. 2009;94:183302.

[13] Myny K, et al. An integrated double half-wave organic Schottky diode rectifier on foil operating at 13.56 MHz. Appl. Phys. Lett. 2008;93:093305.

[14] Yan H, et al. A high-mobility electron-transporting polymer for printed transistors. Nature. 2009;457:679686.

[15] Myny K, et al. An 8-bit, 40-instructions-per-second organic microprocessor on plastic foil. IEEE J. Sol. State Circ. 2012;47(1):284291.

[16] Ma L, et al. Nanometer-scale recording on an organic-complex thin film with a scanning tunneling microscope. Appl. Phys. Lett. 1996;69:3762.

[17] Myny K, et al. Plastic circuits and tags for 13.56 MHz radio-frequency communication. Solid State Electron. 2009;53:12201226.

[18] Ling Q-D, et al. Polymer electronic memories: materials, devices and mechanisms. Prog. Polym. Sci. 2008;33:917978.

[19] Lee KS, et al. High-resolution characterization of pentacene/polyaniline interfaces in thin-film transistors. Adv. Funct. Mater. 2006;16:24092414.

[20] Kang HS, et al. Electrical characteristics of pentacene-based thin film transistor with conducting poly(3,4-ethylenedioxythiophene) electrodes. J. Appl. Phys. 2006;100:064508.

[21] Liscio A, et al. Charge transport in graphene–polythiophene blends as studied by Kelvin Probe Force Microscopy and transistor characterization. J. Mater. Chem. 2011;21:29242931.

[22] Odom TW, et al. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature. 1998;391:6264.

[23] Baughman RH, Zakhidov AA, De Heer WA. Carbon Nanotubes—the route toward applications. Science. 2002;297(5582):787792.

[24] Toniolo R, Lepienski C, Hümmelgen I. Organic electronic pulse generator. Electron. Lett. 2004;40:566567.

[25] Zhang C, et al. Alkali metal crystalline polymer electrolytes. Nat. Mater. 2009;8:580584.

[26] Otero TF, Broschart M. Polypyrrole artificial muscles: a new rhombic element. Construction and electrochemomechanical characterization. J. Appl. Electrochem. 2006;36(2):205214.

[27] Sokolov AN, Roberts ME, Bao Z. Fabrication of low-cost electronic biosensors. Mater. Today. 2009;12(9):1220.

[28] Inoue Y, et al. Low-voltage organic thin-film transistors on flexible plastic substrates. Mat. Res. Soc. Symp. Proc. 2003;736:D4.2.1.

[29] Yokoyama O. Active-matrix full color organic electroluminescent displays fabricated by ink-jet printing. Optronics. 2003;254:119.

[30] Loi A, Manunza I, Bonfiglio A. Flexible, organic, ion-sensitive field-effect transistor. Appl. Phys. Lett. 2005;86:103512.

[31] Johnson KS, et al. Chemical sensor networks for the aquatic environment. Chem. Rev. 2007;107:623640.

[32] Liao F, Chen C, Subramanian V. Organic TFTs as gas sensors for electronic nose applications. Sens. Actuat. B. 2005;107:849855.

[33] Zhu L, et al. Flavour analysis in a pharmaceutical oral solution formulation using an electronic-nose. J. Pharm. Biomed. Anal. 2004;34:453461.

[34] Voiculescu I, et al. Micropreconcentrator for enhanced trace detection of explosives and chemical agents. IEEE Sens. J. 2006;6:10941104.

[35] Wang L, et al. Nanoscale organic and polymeric field-effect transistors as chemical sensors. Anal. Bioanal. Chem. 2006;384:310321.

[36] Macaya DJ, et al. Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors. Sens. Actuat. B. 2007;123:374378.

[37] Tsumura A, Koezuka H, Ando T. Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 1986;49:1210.

[38] Koezuka H, Tsumura A, Ando T. Field-effect transistor with polythiophene thin film. Synth. Met. 1987;18:699704.

[39] Lawrence CJ. The mechanics of spin coating of polymer films. Phys. Fluids. 1988;31:27862795.

[40] Bao Z, Dodabalapur A, Lovinger AJ. Soluble and processable regioregular poly(3-hexyl-thiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 1996;69:41084110.

[41] Kitamura M, Imada T, Arakawa Y. Organic light-emitting diodes driven by pentacene-based thin-film transistors. Appl. Phys. Lett. 2003;83:3410.

[42] Takeya J, et al. Field-induced charge transport at the surface of pentacene single crystals: a method to study charge dynamics of two-dimensional electron systems in organic crystals. J. Appl. Phys. 2003;94:5800.

[43] Haas S, et al. High-performance dinaphtho-thieno-thiophene single crystal field-effect transistors. Appl. Phys. Lett. 2009;95:022111.

[44] Yi HT, et al. Vacuum lamination approach to fabrication of high-performance single-crystal organic field-effect transistors. Adv. Mater. 2011;23:58075811.

[45] Decher G, Hong J-D. Buildup of ultrathin multilayer films by a self-assembly process: I. consecutive adsorption of anionic and cationic bipolar amphiphiles. Makromol. Chem. Macromol. Symp. 1991;46:321327.

[46] Bao Z, et al. High-performance plastic transistors fabricated by printing techniques. Chem. Mater. 1997;9:12991301.

[47] Rogers JA, et al. Printing process suitable for reel-to-reel production of high-performance organic transistors and circuits. Adv. Mater. 1999;11:741745.

[48] Xia Y, Whitesides GM. Soft lithography. Angew. Chem. Int. Ed. 1998;37:550.

[49] Li D, Guo LJ. Micron-scale organic thin film transistors with conducting polymer electrodes patterned by polymer inking and stamping. Appl. Phys. Lett. 2006;88:063513.

[50] Fortuna L, et al. On the way to plastic computation. IEEE Circuits Syst. Mag. 2008;8(3):618.

[51] Chou SY, Krauss PR, Renstrom PJ. Imprint of sub-25 nm vias and tren-ches in polymers. Appl. Phys. Lett. 1995;67(21):3114.

[52] Brütting W, et al. Device physics of organic light-emitting diodes based on molecular materials. Org. Electron. 2001;2:136.

[53] Fowler RH, Nordheim L. Electron emission in intense electric fields. Proc. R. Soc. Lond. 1928;119(781):173181.

[54] Burrows PE, et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices. J. Appl. Phys. Lett. 1996;79:79918006.

[55] Lampert MA, Mark P. Current Injection in Solids. New York: Academic Press; 1970.

[56] Murgatroyd PN. Theory of space-charge-limited current enhanced by Frenkel effect,. J. Phys. D Appl. Phys. 1970;3:151.

[57] Borsemberg PM, Weiss DS. Organic Photoreceptors for Imaging Systems. New York: Marcel Dekker; 1993.

[58] J.E. Lilienfeld, Methods and apparatus for controlling electric current. US Patent 1,745,175. Applied on October 8, 1926, granted on January 18, 1930.

[59] Kahng D, Atalla MM. IRE Solid-State Devices Research Conf. Pittsburgh, PA: Carn-egie Institute of Technology; 1960.

[60] Moore G. Cramming more components onto integrated circuits. Electron. Mag. 1965;38:114117.

[61] Voss D. Cheap and cheerful circuits. Nature. 2000;407:442444.

[62] Rotzoll R, et al. Radio frequency rectifiers based on organic thin-film transistors. Appl. Phys. Lett. 2006;88:123502.

[63] Mabrook MF, et al. A pentacene-based organic thin film memory transistor. Appl. Phys. Lett. 2009;94:173302.

[64] Maccioni M, et al. Towards the textile transistor: assembly and characterization of an organic field effect transistor with a cylindrical geometry. Appl. Phys. Lett. 2006;89:143515.

[65] Mabeck J, Malliaras G. Chemical and biological sensors based on organic thin-film transistors. Anal. Bioanal. Chem. 2005;384:343353.

[66] Bartic C, Borghs G. Organic thin-film transistors as transducers for (bio) analytical applications. Anal. Bioanal. Chem. 2006;384:354365.

[67] Singh TB, Sariciftci NS. Progress in plastic electronics devices. Annu. Rev. Mater. Res. 2006;36:199230.

[68] Cavallari MR, et al. PECVD silicon oxynitride as insulator for MDMO-PPV. J Integr. Circ. Syst. 2010;5:116124.

[69] V.R. Zanchin et al., Low voltage organic devices with high-k TiOxNy and PMMA dielectrics for future application on flexible electronics, 26th Symposium on Microelectronics Technology and Devices (SBMicro 2011), 2011, João Pessoa (Paraíba), Microelectronics Technology and Devices—SBMicro 2011, vol. 39, Electrochemical Society Transactions, New Jersey, USA, 2011, pp. 455–460.

[70] Klauk H, et al. Pentacene organic transistors and ring oscillators on glass and on flexible polymeric substrates. Appl. Phys. Lett. 2003;82:4175.

[71] Lee J, et al. Flexible semitransparent pentacene thin-film transistors with polymer dielectric layers and NiOx electrodes. Appl. Phys. Lett. 2005;87:023504.

[72] Dimitrakopoulos CD, et al. Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science. 1999;283:822824.

[73] Lin Y-Y, et al. Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron. Dev. Lett. 1997;18(12):606608.

[74] Martino JA, Pavanello MA, Verdonck PB. Transistor MOS. Electrical Characterization of MOS Technology and Devices (Caracterização elé-trica de tecnologia e dispositivos MOS). São Paulo: Pioneira Thomson Learning; 2003:75106.

[75] Yoon M-H, et al. Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. J. Am. Chem. Soc. 2006;128:1285112869.

[76] Bonfiglio A, Mameli F, Sanna O. A completely flexible organic transistor obtained by a one-mask photolithographic process. Appl. Phys. Lett. 2003;82(20):35503552.

[77] Fumagalli L, et al. Al2O3 as gate dielectric for organic transistors: charge transport phenomena in poly-(3-hexylthiophene) based devices. Org. Electron. 2008;9:198208.

[78] Natali D, Fumagalli L, Sampietro M. Modeling of organic thin film transistors: effect of contact resistances. J. Appl. Phys. 2007;101:014501.

[79] Vissenberg MCJM, Matters M. Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. B. 1999;57:1296412967.

[80] Horowitz G, Hajlaoui ME, Hajlaoui R. Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors. J. Appl. Phys. 2000;87:4456.

[81] Fumagalli L, et al. Dependence of the mobility on charge carrier density and electric field in poly(3-hexylthiophene) based thin film transistors: effect of the molecular weight. J. Appl. Phys. 2008;104:084513.

[82] Zaumseil J, Baldwin KW, Rogers JA. Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination. J. Appl. Phys. 2003;93:61176124.

[83] Sirringhaus H, et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature. 1999;401:685688.

[84] Osaka I, Mccullough RD. Advances in molecular design and synthesis of regioregular polythiophenes. Acc. Chem. Res. 2008;41:12021214.

[85] Cavallari MR, et al. Methodology of semiconductor selection for polymer thin-transistors based on charge carrier mobility. J. Mater. Sci. Eng. Adv. Technol. 2011;4:3356.

[86] Amorim CA, et al. Determination of carrier mobility in MEH-PPV thin-films by stationary and transient current techniques. J. Non-Cryst. Sol. 2012;358:484491.

[87] M.R. Cavallari, et al., Time-of-flight technique limits of applicability for thin-films of conjugated polymers. 2011 MRS Fall Meeting, 2012, Boston (USA). MRS Proceedings—Symposium U Charge Generation/Transport in Organic Semiconductor Materials, Cambridge University Press, Cambridge (UK), pp. 1402–1403.

[88] Laquindanum JG, Katz HE, Lovinger AJ. Synthesis, morphology, and field-effect mobility of anthradithiophenes. Am. Chem. Soc. 1998;120:664672.

[89] Saudari SR, Frail PR, Kagan CR. Ambipolar transport in solution-deposited pentacene transistors enhanced by molecular engineering of device contacts. Appl. Phys. Lett. 2009;95:023301.

[90] Fuchigami H, Tsumura A, Koezuka H. Polythienylenevinylene thin-film transistor with high carrier mobility. Appl. Phys. Lett. 1993;63:1372.

[91] Schon JH, Batlogg B. Modeling of the temperature dependence of the field-effect mobility in thin film devices of conjugated oligomers. Appl. Phys. Lett. 1999;74(2):260262.

[92] Salaneck WR, Stafström S, Brédas JL. Conjugated Polymer Surfaces and Interfaces. Cambridge: Cambridge University Press; 1996: pp. 50–71 (Chapters 4 and 5).

[93] Chua L-L, et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature. 2005;434:194199.

[94] Ohnuki H, et al. Effects of interfacial modification on the performance of an organic transistor based on TCNQ LB films. Thin Solid Films. 2008;516:27472752.

[95] Benson N, et al. Electronic states at the dielectric/semiconductor interface in organic field effect transistors. Phys. Stat. Sol. (a). 2008;205(3):475487.

[96] Arias AC, et al. All jet-printed polymer thin-film transistor active-matrix backplanes. Appl. Phys. Lett. 2004;85:3304.

[97] Wu Y, et al. Controlled orientation of liquid-crystalline polythiophene semiconductors for high-performance organic thin-film transistors. Appl. Phys. Lett. 2005;86:142102.

[98] Chabinyc ML, et al. Effects of the surface roughness of plastic-compatible inorganic dielectrics on polymeric thin film transistors. Appl. Phys. Lett. 2007;90:233508.

[99] Cates NC, et al. Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation. Nano Lett. 2009;9:41534157.

[100] Rivnay J, et al. Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Phys. Rev. B. 2011;83:121306.

[101] Briseno AL, et al. n-Channel polymer thin film transistors with long-term air-stability and durability and their use in complementary inverters. J. Mater. Chem. 2011;21:1646116466.

[102] Baeg K-J, et al. High speeds complementary integrated circuits fabricated with all-printed polymeric semiconductors. J. Polym. Sci. B Polym. Phys. 2011;49:6267.

[103] Rivnay J, et al. Drastic control of texture in a high performance n-type polymeric semiconductor and implications for charge transport. Macromolecules. 2011;44:52465255.

[104] Chen Z, et al. Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-gate N-channel organic transistors. J. Am. Chem. Soc. 2009;131(1):89.

[105] Ha T-J, et al. Charge transport and density of trap states in balanced high mobility ambipolar organic thin-film transistors. Org. Electron. 2012;13:136141.

[106] Lee B, et al. Origin of the bias stress instability in single-crystal organic field-effect transistors. Phys. Rev. B. 2010;82:085302.

[107] Liang Z, et al. Soluble and stable N-heteropentacenes with high field-effect mobility. Adv. Mater. 2011;23:15351539.

[108] Takeya J, et al. Very high-mobility organic single-crystal transistors with in-crystal conduction channel. Appl. Phys. Lett. 2007;90:102120.

[109] Xie W, Frisbie CD. Organic electrical double layer transistors based on rubrene single crystals: examining transport at high surface charge densities above 1013 cm−2. J. Phys. Chem. C. 2011;115:1436014368.

[110] Chen H, et al. Synthesis and characterization of novel semiconductors based on thieno[3,2-b][1]benzothiophene cores and their applications in the organic thin-film transistors. J. Phys. Chem. C. 2011;115:2398423991.

[111] Nakayama K, et al. Patternable solution-crystallized organic transistors with high charge carrier mobility. Adv. Mater. 2011;23:16261629.

[112] Mccarthy MA, et al. Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science. 2011;332:570573.

[113] Minemawari H, et al. Inkjet printing of single-crystal films. Nature. 2011;475:364367.

[114] Ma L, et al. High performance polythiophene thin-film transistors doped with very small amounts of an electron acceptor. Appl. Phys. Lett. 2008;92:063310.

[115] Molinari AS, et al. High electron mobility in vacuum and ambient for PDIF-CN2 single-crystal transistors. J. Am. Chem. Soc. 2009;131:24622463.

[116] Ono S, et al. High-performance n-type organic field-effect transistors with ionic liquid gates. Appl. Phys. Lett. 2010;97:143307.

[117] Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotech. 2008;3:270274.

[118] Ohnuki H, et al. Effects of interfacial modification on the performance of an organic transistor based on TCNQ LB films. Thin Solid Films. 2008;516:27472752.

[119] Cytop® amorphous fluoropolymer—technical information, Agc Chemicals Europe, Reino Unido, http://www.agcce.com/CYTOP/TechInfo.asp

[120] Anthony JE. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 2006;106:50285048.

[121] Tang ML, et al. Ambipolar, high performance, acene-based organic thin film transistors. J. Am. Chem. Soc. 2008;130:60646065.

[122] Murphy AR, Frechet JMJ. Organic semiconducting oligomers for use in thin film transistors. Chem. Rev. 2007;107:10661096.

[123] Mannsfeld SCB, et al. Highly efficient patterning of organic single-crystal transistors from the solution phase. Adv. Mater. 2008;20:40444048.

[124] Tanase C, et al. Optimization of the charge transport in poly(phenylenevinylene) derivatives by processing and chemical modification. J. Appl. Phys. 2005;97:123703.

[125] Acton O, et al. π-σ-Phosphonic acid organic monolayer/sol-gel hafnium oxide hybrid dielectrics for low-voltage organic transistors. Adv. Mater. 2008;20:36973701.

[126] Roberts ME, et al. Water-stable organic transistors and their application in chemical and biological sensors. Proc. Natl. Acad. Sci. USA. 2008;105:1213412139.

[127] Yang C, et al. Low-voltage organic transistors on a polymer substrate with an aluminum foil gate fabricated by a laminating and electropolishing process. Appl. Phys. Lett. 2006;89:153508.

[128] Someya T, et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA. 2004;101:99669970.

[129] Di C-a, et al. Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc. Chem. Res. 2009;42(10):15731583.

[130] Locklin J, Bao Z. Effect of morphology on organic thin film transistor sensors. Anal. Bioanal. Chem. 2006;384:336342.

[131] Ling MM, Bao ZN. Thin film deposition, patterning, and printing in organic thin film transistors. Chem. Mater. 2004;16:48244840.

[132] Torsi L, et al. Multi-parameter gas sensors based on organic thin-film-transistors. Sens. Actuat. B. 2000;67:312316.

[133] Zhu Z-T, et al. Humidity sensors based on pentacene thin-film transistors. Appl. Phys. Lett. 2002;81:46434645.

[134] Taylor DM, et al. Effect of oxygen on the electrical characteristics of field effect transistors formed from electrochemically deposited films of poly(3-methylthiophene). J. Phys. D Appl. Phys. 1991;24:20322038.

[135] Chaabane RB, et al. Influence of ambient atmosphere on the electrical properties of organic thin film transistors. Mater. Sci. Eng. C. 2006;26:514518.

[136] Crone B, et al. Electronic sensing of vapors with organic transistors. Appl. Phys. Lett. 2001;78:22292231.

[137] Crone BK, et al. Organic oscillator and adaptive amplifier circuits for chemical vapour sensing. J. Appl. Phys. 2002;91:1014010146.

[138] Chang JB, et al. Printable polythiophene gas sensor array for low-cost electronic noses. J. Appl. Phys. 2006;100:014506.

[139] Jeong JW, et al. The response characteristics of a gas sensor based on poly-3-hexylithiophene thin-film transistors. Sens. Actuat. B Chem. 2010;146:4045.

[140] Kim K-H, Jahan SA, Kabir E. A review of breath analysis for diagnosis of human health. TrAC. 2012;33:18.

[141] Bergveld P. Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. 1972;19:342351.

[142] Bartic C, et al. Organic-based transducer for low-cost charge detection in aqueous media. IEDM Tech. Digest. 2000; 411414,: doi: 10.1109/IEDM.2000.904343.

[143] Gao C, et al. A disposable polymer field effect transistor (FET) for pH measurement. Proc. of IEEE Transducers. 2003;2:11721175.

[144] Spijkman MJ, et al. Dual-gate organic field-effect transistors as potentiometric sensors in aqueous solution. Adv. Funct. Mater. 2010;20:898905.

[145] Kalyani NT, Dhoble SJ. Organic light emitting diodes: energy saving lighting technology—a review. Renew. Sustainable Energy Rev. 2012;16:26962723.

[146] Burroughes, et al. Light-emitting diodes based on conjugated polymers. Nature. 1990;347:539.

[147] Brütting W, Berleb S, Mückl AG. Devices physics of organic light-emitting diodes based on molecular materials. Org. Electron. 2001;2:136.

[148] Hung LS, Chen CH. Recent progress of molecular organic electroluminescent for materials and devices. Mater. Sci. Eng.: R: Reports. 2002;39:143222.

[149] Bradley DDC, et al. Polymer light emission: control of properties through chemical structure and morphology. Opt. Mater. 1998;9:111.

[150] Ahn SI, et al. OLED with a controlled molecular weight of the PVK (poly(9-ninylcarbazole) formed by a reative ink-jet process. Org. Electron. 2012;13:980984.

[151] Geffroy B, Roy P, Prat C. Organic light-emitting diode (OLED) technology: materials, devices and displays technologies. Polym. Int. 2006;55:572582.

[152] G. Santos, Study of organic light emitting devices employing complexes of rare earth and transition metals (Estudo de dispositivos orgânicos emissores de luz empregando complexos de terras raras e de metais de transição), PhD Thesis, Politechnical University of Sao Paulo (Escola Politécnica da Universidade de São Paulo), 2008. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-16042009-144608/

[153] Nesterov A, et al. Simulation study of the influence of polymer modified anodes on organic LED performance. Synth. Met. 2002;130:165175.

[154] Adamovich VI, et al. New charge-carrier blocking materials for high efficiency OLEDs. Org. Electron. 2003;4:7787.

[155] Santos G, et al. Organic light emitting diodes with europium (III) emissive layers based on b-diketonate complexes: the influence of the central ligand. J. Non-Cryst. Sol. 2008;354:28972900.

[156] Forrest SR, Bradley DDC, Thompson ME. Measuring the efficiency of organic light emitting devices. Adv. Mat. 2003;15:10431048.

[157] Santos G, et al. Opto-electical properties of single layer flexible electroluminescence device with ruthenium complex. J. Non-Cryst. Sol. 2008;354:25712574.

[158] Luminous efficiency graphic, http://www.cvrl.org/cie.htm

[159] Diffuse reflectors—essentials of reflections and table of contents, Gigahertz-optik, p. 123. http://www.gigahertz-optik.de/pdf/catalogue/Diffuse_Reflectors.pdf

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset