References

Chapter 1

  1. Achenbach, J. (1987). Wave Propagation in Elastic Solids. North-Holland, Amsterdam.
  2. Bochud, N., Laurent, J., Bruno, F., Royer, D., Prada, C. (2018). Towards real-time assessment of anisotropic plate properties using elastic guided waves. J. Acoust. Soc. Am., 143, 1138–1147.
  3. Bruneau, M. (2006). Fundamentals of Acoustics. ISTE Ltd, London.
  4. Corbel, C., Guillois, F., Royer, D., Fink, M.A., De Mol, R. (1993). Laser-generated elastic waves in carbon-epoxy composite. IEEE Trans. Ultrason. Ferr., 40(6), 710–716.
  5. Fink, M.A. and Cardoso, J.F. (1984). Diffraction effects in pulse-echo measurement. IEEE Trans. Son. Ultrason., 31(4), 313–329.
  6. Kino, G.S. (1987). Acoustic Waves: Devices, Imaging, and Analog Signal Processing. Prentice-Hall, Upper Saddle River.
  7. Lamb, H. (1904). On the propagation of tremors over the surface of an elastic solid. Phil. Trans. Roy. Soc. (London), A203, 1–42.
  8. Maris, H.J. (1971). Enhancement of heat pulses in crystals due to elastic anisotropy. J. Acoust. Soc. Am., 50(3B), 812–818.
  9. Penttinen, A. and Luukkala, M. (1976). The impulse response and pressure nearfield of a curved ultrasonic radiator. J. Phys. D: Appl. Phys., 9(10), 1547–1557.
  10. Poncelet, O. and Deschamps, M. (2009). The Cagniard–de Hoop method. In Materials and Acoustics Handbook, Bruneau, M. and Potel, C. (eds). ISTE Ltd, London and John Wiley & Sons, New York.
  11. Royer, D. (2001). Mixed matrix formulation for the analysis of laser-generated acoustic waves by a thermoelastic line source. Ultrasonics, 39(5), 345–354.
  12. Stepanishen, P.R. (1971). Transient radiation from pistons in an infinite planar baffle. J. Acoust. Soc. Am., 49(5B), 1629–1638.
  13. Weaver, R.L., Sachse, W., Kim, K.Y. (1996). Transient elastic waves in a transversely isotropic plate. J. Appl. Mech., 63(2), 337–346.

Chapter 2

  1. Brillouin, L. (1949). The scattering cross section of spheres for electromagnetic waves. J. Appl. Phys., 20(11), 1110–1125.
  2. Conoir, J.-M. and Norris, A.N. (2010). Effective wavenumbers and reflection coefficients for an elastic medium containing random configurations of cylindrical scatterers. Wave Motion, 47(3), 183–197.
  3. Derode, A., Mamou, V., Tourin, A. (2006). Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium. Phys. Rev. E, 74, 036606.
  4. Duranteau, M., Valier-Brasier, T., Conoir, J.-M., Wunenburger, R. (2016). Random acoustic metamaterial with a subwavelength dipolar resonance. J. Acoust. Soc. Am., 139(6), 3341–3352.
  5. Einspruch, N.G., Witterholt, E.J., Truell, R. (1960). Scattering of a plane transverse wave by a spherical obstacle in an elastic medium. J. Appl. Phys., 31(5), 806–818.
  6. Faran, J.J. (1951). Sound scattering by solid cylinders and spheres. J. Acoust. Soc. Am., 23, 405–418.
  7. Fikioris, J.G. and Waterman, P.C. (1964). Multiple scattering of waves II. “Hole corrections” in the scalar case. J. Math. Phys., 5, 1413–1420.
  8. Foldy, L.L. (1945). The multiple scattering of waves I. General theory of isotropic scattering by randomly distributed scatterers. Phys. Rev., 67(3–4), 107–119.
  9. Gaunaurd, G.C. and Überall, H. (1978). Theory of resonant scattering from spherical cavities in elastic and viscoelastic media. J. Acoust. Soc. Am., 63(6), 1699–1712.
  10. Ishimaru, A. (1978). Wave Propagation and Scattering in Random Media, volume 2: Multiple Scattering, Turbulence, Rough Surfaces, and Remote Sensing. Academic Press, Cambridge.
  11. Lax, M. (1952). Multiple scattering of waves II. The effective field in dense systems. Phys. Rev., 85, 621–629.
  12. Linton, C.M. and Martin, P.A. (2005). Multiple scattering by random configurations of circular cylinders: Second-order corrections for the effective wavenumber. J. Acoust. Soc. Am., 117(6), 3413–3423.
  13. Liu, Y., Wu, R.-S., Ying, C.F. (2000). Scattering of elastic waves by an elastic or viscoelastic cylinder. Geophys. J. Int., 142, 439–460.
  14. Luppé, F., Conoir, J.-M., Norris, A.N. (2012). Effective wave numbers for thermo-viscoelastic media containing random configurations of spherical scatterers. J. Acoust. Soc. Am., 131(2), 1113–1120.
  15. Morse, P.M. and Feshbach, H. (1953). Methods of Theoretical Physics, Part II. McGraw-Hill, New York.
  16. Rohfritsch, A., Conoir, J.-M., Marchiano, R., Valier-Brasier, T. (2019). Numerical simulation of two-dimensional multiple scattering of sound by a large number of circular cylinders. J. Acoust. Soc. Am., 145(6), 3320–3329.
  17. Tsang, L. and Kong, J. (1982). Effective propagation constants for coherent electromagnetic wave propagation in media embedded with dielectric scatters. J. Appl. Phys., 53, 7162.
  18. Valier-Brasier, T., Conoir, J.-M., Coulouvrat, F., Thomas, J.-L. (2015). Sound propagation in dilute suspensions of spheres: Analytical comparison between coupled phase model and multiple scattering theory. J. Acoust. Soc. Am., 138(4), 2598–2612.
  19. Waterman, P.C. and Truell, R. (1961). Multiple scattering of waves. J. Math. Phys., 2(4), 512–537.

Chapter 3

  1. Achenbach, J. (1987). Wave Propagation in Elastic Solids. North-Holland, Amsterdam.
  2. Aki, K. and Richards, P.G. (1997). Quantitative Seismology, 2nd edition. University Science Books, Melville.
  3. Carslaw, H.S. and Jaeger, J.C. (1959). Conduction of Heat in Solids. Clarendon Press, Oxford.
  4. Chen, D.-P. and Haus, H.A. (1985). Analysis of metal-strip saw gratings and transducers. IEEE Trans. Son. Ultrason., 32(3), 395–408.
  5. Datta, S. and Hunsinger, B.J. (1979). First-order reflection coefficient of surface acoustic waves from thin-strip overlays. J. Appl. Phys., 50(9), 5661–5665.
  6. Datta, S. and Hunsinger, B.J. (1980). An analytical theory for the scattering of surface acoustic waves by a single electrode in a periodic array on a piezoelectric substrate. J. Appl. Phys., 51(9), 4817–4823.
  7. Dewhurst, R.J., Hutchins, D.A., Palmer, S.B., Scruby, C.B. (1982). Quantitative measurements of laser-generated acoustic waveforms. J. Appl. Phys., 53(6), 4064–4071.
  8. Hartmann, C.S., Bell, D.T., Rosenfeld, R.C. (1973). Impulse model design of acoustic surface-wave filters. IEEE Trans. Microw. Theory, 21(4), 162–175.
  9. Hartmann, C.S., Wright, P.V., Kansy, R.J., Garber, E.M. (1982). An analysis of saw interdigital transducers with internal reflections and the application to the design of single-phase unidirectional transducers. IEEE Ultrasonics Symp. Proc., 1, 40–45.
  10. Higuet, J., Valier-Brasier, T., Dehoux, T., Audoin, B. (2011). Beam distortion detection and deflectometry measurements of gigahertz surface acoustic waves. Rev. Sci. Instrum., 82(11), 114905.
  11. Hutchins, D.A. (1988). Ultrasonic generation by pulsed laser. In Physical Acoustics, volume 18, Thurston R.N. and Pierce, A.D. (eds). Academic Press Inc., Cambridge.
  12. Krimholtz, R., Leedom, D.A., Matthaei, G.L. (1970). New equivalent circuits for elementary piezoelectric transducers. Electron. Lett., 6(13), 398–399.
  13. Kwaaitaal, T. (1974). Contribution to the interferometric measurement of sub-angstrom vibrations. Rev. Sci. Instrum., 45(1), 39–41.
  14. Lewis, M.F. (1983). A different approach to the wave-scattering properties of interdigital transducers. IEEE Trans. Son. Ultrason., 30(1), 55–56.
  15. Mason, W.P. (1948). Electromechanical Transducers and Wave Filters, 2nd edition. Van Nostrand-Reinhold, Princeton.
  16. Monchalin, J. (1986). Optical detection of ultrasound. IEEE Trans. Ultrason. Ferr., 33(5), 485–499.
  17. Ohigashi, H., Koga, K., Suzuki, M., Nakanishi, T., Kimura, K., Hashimoto, N. (1984). Piezoelectric and ferroelectric properties of P(VDF-TrFE) copolymers and their application to ultrasonic transducers. Ferroelectrics, 60(1), 263–276.
  18. Ready, J.F. (1971). Effect of High Power Radiation. Academic Press, New York.
  19. Redwood, M. (1961). Transient performance of a piezoelectric transducer. J. Acoust. Soc. Am., 33(4), 527–536.
  20. Rose, L.R.F. (1984). Point-source representation for laser-generated ultrasound. J. Acoust. Soc. Am., 75(3), 723–732.
  21. Royer, D. (2001). Mixed matrix formulation for the analysis of laser-generated acoustic waves by a thermoelastic line source. Ultrasonics, 39(5), 345–354.
  22. Royer, D. and Dieulesaint, E. (1986). Optical detection of sub-angstrom transient mechanical displacements. IEEE Ultrason. Symp. Proc., 1, 527–530.
  23. Royer, D. and Dieulesaint, E. (1999). Ondes élastiques dans les solides : génération, interaction acousto-optique, applications, Volume 2. Masson, Paris.
  24. Scruby, C.B. and Drain, L.E. (1990). Laser Ultrasonics Techniques and Applications. Adam Hilger, London.
  25. Smith, W.A. and Auld, B.A. (1991). Modeling 1-3 composite piezoelectrics: Thickness-mode oscillations. IEEE Trans. Ultrason. Ferr., 38(1), 40–47.
  26. Tancrell, R.H. and Holland, M.G. (1971). Acoustic surface wave filters. Proceedings of the IEEE, 59(3), 393–409.
  27. Thompson, R.B. (1990). Physical principles of measurements with EMAT transducers. In Physical Acoustics, Volume 19, Thurston, R.N. and Pierce, A.D. (eds). Academic Press Inc., Cambridge.
  28. Thomsen, C., Strait, J., Vardeny, Z., Maris, H.J., Tauc, J., Hauser, J.J. (1984). Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett., 53, 989–992.
  29. White, R.M. and Voltmer, F.W. (1965). Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett., 7(12), 314–316.
  30. Wright, P.V. (1989). A new generalized modeling of saw transducers and gratings. In Proceedings of the 43rd Annual Symposium on Frequency Control, IEEE, Denver, 596–605.

General bibliography

  1. Achenbach, J. (2012). Wave Propagation in Elastic Solids. North-Holland, New York.
  2. Aki, K. and Richards, P.G. (2002). Quantitative Seismology. University Science Books, Herndon.
  3. Auld, B.A. (1990). Acoustic Fields and Waves in Solids, Volume 1. R.E. Krieger Publishing Company, Malabar.
  4. Brekhovskikh, L.M. and Godin, O.A. (1998). Acoustics of Layered Media I: Plane and Quasi-Plane Waves, 2nd edition. Springer, Berlin.
  5. Bruneau, M. and Potel, C. (2009). Materials and Acoustics Handbook. ISTE Ltd, London and John Wiley & Sons, New York.
  6. Campbell, C. (1989). Surface Acoustic Waves Devices and Their Signal Processing Applications. Academic Press, Boston.
  7. Cheeke, J.D.N. (2002). Fundamentals and Applications of Ultrasonic Waves. CRC Press, Boca Raton.
  8. Elmore, W.C. and Heald, M.A. (1985). Physics of Waves. Dover Publications, New York.
  9. Gusev, V. and Karabutov, A. (1993). Laser Optoacoustics. AIP Press, College Park.
  10. Hutchins, D.A. and Hayward, G. (1990). Radiated fields of ultrasonic transducers. Physical Acoustics, 19, 1–80.
  11. Kennett, B. (1983). Seismic Wave Propagation in Stratified Media. Cambridge University Press, Cambridge.
  12. Kino, G.S. (1987). Acoustic Waves: Devices, Imaging, and Analog Signal Processing. Prentice-Hall, Upper Saddle River.
  13. Martin, P.A. (2006). Multiple Scattering – Interaction of Time-Harmonic Waves with N Obstacles. Cambridge University Press, Cambridge.
  14. Miklowitz, J. (2012). The Theory of Elastic Waves and Waveguides. North-Holland, New York.
  15. Mindlin, R.D. and Yang, J. (2006). An Introduction to the Mathematical Theory of Vibrations of Elastic Plates. World Scientific, Singapore.
  16. Morgan, D.P. (1991). Surface-Wave Devices for Signal Processing. Elsevier, New York.
  17. Nayfeh, A.H. (1995). Wave Propagation in Layered Anisotropic Media. North-Holland, New York.
  18. Ristic, V.M. (1983). Principles of Acoustic Devices. John Wiley & Sons, New York.
  19. Rose, J.L. (2004). Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge.
  20. Rose, J.L. (2014). Ultrasonic Guided Waves in Solid Media. Cambridge University Press, Cambridge.
  21. Royer, D. and Valier-Brasier, T. (2022). Elastic Waves in Solids 1: Propagation. ISTE Ltd, London and John Wiley & Sons, New York.
  22. Royer, D. and Dieulesaint, E. (1996). Ondes élastiques dans les solides : propagation libre et guidée, Volume 1. Masson, Paris.
  23. Royer, D. and Dieulesaint, E. (1999). Ondes élastiques dans les solides : génération, interaction acousto-optique, applications, Volume 2. Masson, Paris.
  24. Salençon, J. (1988). Mécanique des milieux continus II – Élasticité-milieux curvilignes. Ellipses, Paris.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset