References

[1] Schlick T. Molecular Modeling and Simulation: An Interdisciplinary Guide. second ed. New York: Springer; 2010.

[2] Casadesús R. Molecular modeling. In: Runehov ALC, Oviedo L, eds. Encyclopedia of Sciences and Religions. Dordrecht: Springer Netherlands; 2013:13441346.

[3] Berg JM, Tymoczko JL, Stryer L. Biochemistry. fifth ed. New York: WH Freeman; 2002: 1100 p.

[4] Rausch F, et al. Protein modeling and molecular dynamic studies of two new surfactant proteins. J. Cheminform. 2013;5(1):111.

[5] Freitas LCG. DIADORIM: a Monte Carlo Program for liquid simulations including quantum mechanics and molecular mechanics (QM/MM) facilities: applications to liquid ethanol. J. Braz. Chem. Soc. 2009;20(8):15411548.

[6] National Research Council (US) Committee on Challenges for the Chemical Sciences in the 21st Century Beyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering. first ed. Washington (DC): National Academic Press; 2003: 224 p.

[7] Valiev M, et al. NWChem: a comprehensive and scalable open-source solution for large-scale molecular simulations. Comput. Phys. Commun. 2010;181(9):14771489.

[8] Scheer M, et al. BRENDA, the enzyme information system in 2011. Nucleic Acids Res. 2011;39(Suppl. 1):D670D676.

[9] Ramachandran KI, Deepa G, Namboori K. Computational Chemistry and Molecular Modeling: Principles and Applications. first ed. Heidelberg: Springer; 2008: 398 p.

[10] Bortolato A, et al. Molecular docking methodologies. In: Monticelli L, Salonen E, eds. Biomolecular Simulations: Methods and Protocols. New York: Springer; 2013:339360.

[11] Nobel Media AB, Press release: The 1998 Nobel Prize in Chemistry, 2016, http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1998/press.html.

[12] Nobel Media AB. The Nobel Prize in Chemistry 2013—press release, 2014, http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/press.html.

[13] Sudik AC, et al. Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. J. Am. Chem. Soc. 2005;127(19):71107118.

[14] Lee MS, et al. New analytic approximation to the standard molecular volume definition and its application to generalized born calculations. J. Comput. Chem. 2003;24(11):13481356.

[15] Young D. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. first ed. New York: John Wiley & Sons; 2004: 408 p.

[16] Callister WD, Rethwisch DG. Materials Science and Engineering: An Introduction. ninth ed. Hoboken: Wiley; 2014: 984 p.

[17] Brown TE, et al. Chemistry: The Central Science. thirteenth ed. Upper Saddle River: Prentice Hall; 2014: 1248 p.

[18] Atkins P, Jones L. Chemical Principles: The Quest for Insight. fifth ed. New York: W.H. Freeman; 2010.

[19] Voet D, Voet JG. Biochemistry. fourth ed. Hoboken: Wiley; 2010: 1248 p.

[20] Schueler-Furman O, et al. Progress in modeling of protein structures and interactions. Science. 2005;310(5748):638642.

[21] Doig AJ, Baldwin RL. N- and C-capping preferences for all 20 amino acids in α-helical peptides. Protein Sci. 1995;4(7):13251336.

[22] Nelson DL, Cox MM. Lehninger Principles of Biochemistry. sixth ed. New York: W.H. Freeman; 2012: 1340 p.

[23] Zvelebil MJ, Baum JO. Understanding Bioinformatics. first ed. New York: Garland Science; 2008: 772 p.

[24] Fermi G, et al. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J. Mol. Biol. 1984;175(2):159174.

[25] Yokoyama T, et al. Novel mechanisms of pH sensitivity in tuna hemoglobin: a structural explanation of the root effect. J. Biol. Chem. 2004;279(27):2863228640.

[26] Zhang H, Tweel B, Tong L. Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop. Proc. Natl. Acad. Sci. USA. 2004;101(16):59105915.

[27] Madauss KP, et al. The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist. Acta. Crystallog. D Biol. Crystallog. 2009;65(Pt. 5):449461.

[28] Mccourt JA, Duggleby RG. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids. 2006;31(2):173210.

[29] Mccourt JA, et al. Elucidating the specificity of binding of sulfonylurea herbicides to acetohydroxyacid synthase. Biochemistry. 2005;44(7):23302338.

[30] Rhodes G. Crystallography Made Crystal Clear: A Guide for Users of Macromolecular Models. third ed. San Diego: Academic Press; 2010.

[31] Apweiler R, et al. Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res. 2013;41(D 1):D43D47.

[32] Wu CH, et al. The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res. 2006;34(Database issue):D187D191.

[33] Pruitt KD, et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 2014;42(Database issue):D756D763.

[34] Schomburg I, et al. BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res. 2013;41(Database issue):D764D772.

[35] Schomburg I, et al. BRENDA: a resource for enzyme data and metabolic information. Trends Biochem. Sci. 2002;27(1):5456.

[36] Sigrist CJ, et al. New and continuing developments at PROSITE. Nucleic Acids Res. 2013;41(Database issue):D344D347.

[37] Sigrist CJ, et al. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform. 2002;3(3):265274.

[38] Berman HM, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235242.

[39] Laskowski RA. Protein structure database. Mol. Biotechnol. 2008;48(2):183198.

[40] SIB—Swiss Institute of Bioinformatics. UniProtKB/Swiss-Prot (Lausanne), 2013, http://web.expasy.org/docs/swiss-prot_guideline.html.

[41] Rose PW, et al. The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res. 2011;39(Database issue):D392D401.

[42] Küppers G, Lenhard J, Shinn T. Computer simulation: practice, epistemology, and social dynamics. In: Lenhard J, Küppers G, Shinn T, eds. Simulation: Pragmatic Construction of Reality. first ed. Dordrecht: Springer; 2006:322.

[43] Winsberg E. Computer simulation and the philosophy of science. Philos. Compass. 2009;4(5):835845.

[44] Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14(1):3338.

[45] Johnson M, et al. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36(Suppl. 2):W5W9.

[46] J. Stone, et al. Using VMD (Urbana-Champaign), 2012, http://www.ks.uiuc.edu/Training/Tutorials/vmd/vmd-tutorial.pdf.

[47] Theoretical and Computational Biophysics Group What is VMD? Illinois, USA: Urbana-Champaign; 2008: http://www.ks.uiuc.edu/Research/vmd/allversions/what_is_vmd.html.

[48] W.L. De Lano, The PyMol molecular graphics system (San Carlos), 2002, http://www.pymol.org/.

[49] Gale JD. Gulp: a computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans. 1997;93:629637.

[50] G. Stockwell, PyMOL tutorial (Cambridge), 2003, http://www.ebi.ac.uk/~gareth/pymol/.

[51] Hanson RM, et al. JSmol and the next-generation web-based representation of 3D molecular structure as applied to proteopedia. Isr. J. Chem. 2013;53(3–4):207216.

[52] Willighagen EL. Processing CML conventions in Java. Internet J. Chem. 2001;4:4.

[53] Hanson RM. Jmol—a paradigm shift in crystallographic visualization. J. Appl. Cryst. 2010;43(5):12501260.

[54] Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem. Mol. Biol. Educ. 2006;34(4):255261.

[55] Pettersen EF, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25(13):16051612.

[56] Couch GS, Hendrix DK, Ferrin TE. Nucleic acid visualization with UCSF Chimera. Nucleic Acids Res. 2006;34(4):e29.

[57] Guex N, Peitsch MC. Swiss-Model and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18(15):27142723.

[58] Kaplan W, Littlejohn TG. Swiss-PDB viewer (deep view). Brief Bioinform. 2001;2(2):195197.

[59] Cornell W, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995;117(3):51795197.

[60] Kalé LV. NAMD: a case study in multilingual parallel programming. In: Li Z, ed. Languages and Compilers for Parallel Computing. Heidelberg: Springer; 1998:367381: (Chapter 26) (Lecture notes in computer science).

[61] Woods RJ, et al. Molecular mechanical and molecular dynamic simulations of glycoproteins and oligosaccharides. 1. GLYCAM_93 parameter development. J. Phys. Chem. 1995;99(11):38323846.

[62] Cramer CJ. Essentials of Computational Chemistry: Theories and Models. second ed. Chichester: John Wiley & Sons; 2004: 596 p.

[63] Jensen F. Introduction to Computational Chemistry. second ed. Chichester: John Wiley & Sons; 2007: 599 p.

[64] Koehler JE, Saenger W, Van Gunsteren WF. A molecular dynamics simulation of crystalline alpha-cyclodextrin hexahydrate. Eur. Biophys. J. 1987;15(4):197210.

[65] Verlet L. Computer “experiments” on Lennard-Jones Molecules. I. Thermodynamical Properties. Defense Technical Information Center, New York; 1967.

[66] Brooks CL, Karplus M, Pettitt BM. Advances in Chemical Physics, Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics. New York: John Wiley & Sons; 1990.

[67] D. Frenkel, Statistical mechanics for computer simulators. Monte Carlo and Molecular Dynamics of Condensed Matter Systems, vol. 49, 1996, pp. 3–42.

[68] Plato J. Boltzmann’s ergodic hypothesis. Arch. Hist. Exact Sci. 1991;42(1):7189.

[69] Swope WC, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 1982;76(1):637649.

[70] Snyman JA. A new and dynamic method for unconstrained minimization. Appl. Math. Model. 1982;6(6):449462.

[71] Snyman JA. An improved version of the original leap-frog dynamic method for unconstrained minimization: LFOP1(b). Appl. Math. Model. 1983;7(3):216218.

[72] Alder B. Methods in Computational Physics. New York: Academic Press; 1977.

[73] van Gunsteren WF, Berendsen HJC. Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys. 1977;34(5):13111327.

[74] Beeman D. Some multistep methods for use in molecular dynamics calculations. J. Comput. Phys. 1976;20(2):130139.

[75] van Gunsteren WF, et al. Biomolecular modeling: goals, problems, perspectives. Angew. Chem. Int. Ed. 2006;45(25):40644092.

[76] Berendsen HJC, et al. Interaction models for water in relation to protein hydration. Intermol. Forces. 1981;14:331342.

[77] Ryckaert J-P, Ciccotti G, Berendsen HJ. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23(3):327341.

[78] Vannucchi G, et al. Rituximab treatment in patients with active Graves’ orbitopathy: effects on proinflammatory and humoral immune reactions. Clin. Exp. Immunol. 2010;161(3):436443.

[79] Hess B, Lincs P-. A parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 2008;4(1):116122.

[80] Shelley JC, Shelley MY. Computer simulation of surfactant solutions. Curr. Opin. Colloid Interface Sci. 2000;5(1–2):101110.

[81] Orozco LO Modesto, et al. Coarse-grained representation of protein flexibility. Foundations, successes, and shortcomings. Adv. Protein Chem. Struct. Biol. 2011;85:183215.

[82] Barducci A, Bonomi M, Parrinello M. Metadynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011;1(5):826843.

[83] Agustín A Medarde, et al. Valve of the detection of Australia antigen in blood donors. Rev. Sanid. Hig. Publica (Madr). 1973;47(6):529536.

[84] Trzesniak D, Lins RD, Van Gunsteren WF. Protein under pressure: molecular dynamics simulation of the arc repressor. Proteins. 2006;65(1):136144.

[85] Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J. Phys. Chem. 1987;91(24):62696271.

[86] Jorgensen WL, et al. Comparison of simple potential functions for simulating liquid water. J. Mol. Biol. 1983;79(2):926935.

[87] Mahoney MW, Jorgensen WL. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 2000;112(20):89108922.

[88] Degreve L, Fuzo CA. Structure and dynamics of the monomer of protein E of dengue virus type 2 with unprotonated histidine residues. Genet. Mol. Res. 2013;12(1):348359.

[89] Franca EF, et al. Designing an enzyme-based nanobiosensor using molecular modeling techniques. Phys. Chem. Chem. Phys. 2011;13(19):88948899.

[90] Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications, vol. 1, Florida: Academic Press; 2001.

[91] Oliveira GS, et al. Molecular modeling of enzyme attachment on AFM probes. J. Mol. Graph. Model. 2013;45:128136.

[92] Oliveira OVD, Santos JDD, Freitas LCG. Molecular dynamics simulation of the GAPDH–NAD+ complex from Trypanosoma cruzi. Mol. Simulat. 2012;38(13):11241131.

[93] Morris GM, Lim-Wilby M. Molecular docking. In: Kukol A, ed. Molecular Modeling of Proteins. first ed. New York: Human Press; 2008:363382.

[94] Garcia-Godoy MJ, et al. Solving molecular docking problems with multi-objective metaheuristics. Molecules. 2015;20(6):1015410183.

[95] Lengauer T, Rarey M. Computational methods for biomolecular docking. Curr. Opin. Struct. Biol. 1996;6(3):402406.

[96] Morris GM, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998;19(4):16391662.

[97] Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):38123814.

[98] Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct. 2003;32:335373.

[99] Ren J, et al. Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase. Structure. 2000;8(10):10891094.

[100] Morris GM, et al. Automated docking with protein flexibility in the design of femtomolar “click chemistry” inhibitors of acetylcholinesterase. J. Chem. Inf. Model. 2013;53(4):898906.

[101] Kitchen DB, et al. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug. Discov. 2004;3(11):935949.

[102] de Azevedo Jr WF. MolDock applied to structure-based virtual screening. Curr. Drug. Targets. 2010;11(3):327334.

[103] Heberlé G, de Azevedo Jr WF. Bio-inspired algorithms applied to molecular docking simulations. Curr. Med. Chem. 2011;18(9):13391352.

[104] Morris GM, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30(16):27852791.

[105] Jones G, et al. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997;267(3):727748.

[106] Melo MC, et al. GSAFold: a new application of GSA to protein structure prediction. Proteins. 2012;80(9):2305.

[107] Halperin I, et al. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins. 2002;47(4):409443.

[108] Warshel A, Levitt M. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 1976;103(2):227249.

[109] Freitas LCG, Longo RL, Simas AM. Reaction-field–supermolecule approach to calculation of solvent effects. J. Chem. Soc. Faraday Trans. 1992;88(2):189193.

[110] Senn HM, Thiel W. QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. Engl. 2009;48(7):11981229.

[111] Tchougréeff AL. Hybrid Methods of Molecular Modeling. first ed. New York: Springer; 2008: 344 p.

[112] Feng W, Pan L, Zhang M. Combination of NMR spectroscopy and X-ray crystallography offers unique advantages for elucidation of the structural basis of protein complex assembly. Sci. China Life Sci. 2011;54(2).

[113] Grotendorst J et al. Hierarchical Methods for Dynamics in Complex Molecular Systems, vol. 10 Forschungszentrum Jülich, Germany: IAS Series; 2012.

[114] Heyden A, Lin H, Truhlar DG. Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multi-scale simulations. J. Phys. Chem. B. 2007;111(9):22312241.

[115] Leach AR. Molecular Modelling: Principles and Applications. second ed. London: Pearson Education; 2002: 744 p.

[116] Friesner RA. Ab initio quantum chemistry: methodology and applications. Proc. Natl. Acad. Sci. USA. 2005;102(19):66486653.

[117] Friesner RA, Guallar V. Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu. Rev. Phys. Chem. 2005;56:389427.

[118] Sholl D, Steckel JA. Density Functional Theory: A Practical Introduction. first ed. Hoboken: Wiley; 2009: 252 p.

[119] Brooks BR, et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983;4(2):187217.

[120] Brooks BR, et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 2009;30(10):15451614.

[121] Case DA, et al. The Amber biomolecular simulation programs. J. Comput. Chem. 2005;26(16):16681688.

[122] Case DA, et al. AMBER 2015. San Francisco: University of California; 2015.

[123] W.F. van Gunsteren, H.J.C. Berendsen, Groningen Molecular Simulation (GROMOS) Library Manual, Biomos, Groningen, The Netherlands, 1987, pp. 1–221.

[124] Scott WRP, et al. The GROMOS biomolecular simulation program package. J. Phys. Chem. A. 1999;103:35963607.

[125] Jorgensen WL, Tirado-Rives J. The OPLS force field for proteins. Energy minimizations for crystals of cyclic eptides and crambin. J. Am. Chem. Soc. 1988;110(6):16571666.

[126] Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996;118(45):1122511236.

[127] Reuter N, et al. Frontier bonds in QM/MM methods: a comparison of different approaches. J. Phys. Chem. A. 2000;104:17201735.

[128] Stewart J. MOPAC: a semiempirical molecular orbital program. J. Comput. Aided Mol. Des. 1990;4(1):1103.

[129] van Der Spoel D, et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 2006;26(16):17011718.

[130] Frisch MJ, et al. Gaussian 03, Revision C. 02. Wallingford CT: Gaussian, Inc; 2004.

[131] Furche F, et al. Turbomole. WIREs Comput. Mol. Sci. 2014;4(2):91100.

[132] Neese F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012;2(1):7378.

[133] Guest MF, et al. The GAMESS-UK structure package: algorithms, developments and applications. Mol. Phys. 2005;103(6–8):719747.

[134] Coutinho K, Canuto S. DICE: A Monte Carlo Program for Molecular Liquid Simulation. Brazil: University of São Paulo; 2003: version 29.

[135] K. Coutinho, S. Canuto, DICE Manual: Version 2.9 (São Paulo, Brazil), http://fig.if.usp.br/~kaline/dice/dicemanual.pdf

[136] Fogolari F, Brigo A, Molinari H. The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J. Mol. Recognit. 2002;15(6):377392.

[137] Elstnera M, Frauenheima T, Suha S. An approximate DFT method for QM/MM simulations of biological structures and processes. J. Mol. Struct. THEOCHEM. 2003;632(1–3):2941.

[138] Karplus M, Petsko GA. Molecular dynamics simulations in biology. Nature. 1990;347:631639.

[139] Koehler JE, Saenger W, van Gunsteren WF. A molecular dynamics simulation of crystalline alpha-cyclodextrin hexahydrate. Eur. Biophys. J. 1987;15(4):197210.

[140] Stewart JJP. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model. D. 2007;13(12):11731213.

[141] Askeland DR, Phulé PP. The Science and Engineering of Materials. fifth ed. London: Thomson; 2006: 790 p.

[142] Pattabhi V, Gautham N. Biophysics. New York: Kluwer; 2002: 253 p.

[143] Serdyuk IN, Zaccai NR, Zaccai J. Methods in Molecular Biophysics: Structure, Dynamics, Function. New York: Cambridge University Press; 2007.

[144] RCSB—Research Collaboratory for Structural Bioinformatics, Yearly growth of structures solved by X-ray (Camden), 2016, http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=explMethod-xray&seqid=100.

[145] Kaplan E, et al. Aminoglycoside binding and catalysis specificity of aminoglycoside 2″-phosphotransferase IVa: a thermodynamic, structural and kinetic study. Biochim. Biophys. Acta. 2016;1860(4):8028013.

[146] Brecher M, et al. Identification and characterization of novel broad-spectrum inhibitors of the flavivirus methyltransferase. ACS Infect. Dis. 2015;1(8):340349.

[147] Suryanarayana C, Norton MG. X-ray Diffraction: A Practical Approach. New York: Plenum Press; 1998.

[148] Snyder RL. X-ray diffraction. In: Lifshin E, ed. X-ray Characterization of Materials. New York: Wiley-VCH; 1999:1103.

[149] Birkholz M. Principles of X-ray diffraction. In: Birkholz M, ed. Thin Film Analysis by X-Ray Scattering. first ed. Weinheim: Wiley; 2006:140: (Chapter 1).

[150] Messerschmidt A. X-Ray Crystallography of Biomacromolecules. first ed. Weinheim: Wiley-VCH; 2007.

[151] RCSB—Research Collaboratory For Structural Bioinformatics, Yearly growth of structures solved by NMR (Camden), 2016, http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=explMethod-nmr&seqid=100.

[152] Rubino JT, et al. Structural characterization of zinc-bound Zmp1, a zinc-dependent metalloprotease secreted by Clostridium difficile. J. Biol. Inorg. Chem. 2015; 112.

[153] Ding J, et al. HdeB chaperone activity is coupled to its intrinsic dynamic properties. Sci. Rep. 2015;5(16856):112.

[154] Duer MJ. Solid State NMR Spectroscopy. first ed. London: Blackwell Science; 2002.

[155] Graaf RA. In vivo NMR Spectroscopy: Principles and Techniques. second ed. Chichester: John Wiley & Sons; 2007.

[156] Rule GS, Hitchens TK. Fundamentals of Protein NMR Spectroscopy. Dordrecht: Springer; 2006.

[157] Pavia DL, et al. Introduction to Spectroscopy. fourth ed. Stamford: Cengage Learning; 2009: 752 p.

[158] Renault M, Cukkemane A, Baldus M. Solid-state NMR spectroscopy on complex biomolecules. Angew Chem. Int. Ed. Engl. 2010;49(45):83468357.

[159] Balci M. Basic 1H- and 13C-NMR Spectroscopy. first ed. Amsterdam: Elsevier; 2005.

[160] Gerothanassis IP, et al. Nuclear magnetic resonance (NMR) spectroscopy: basic principles and phenomena, and their applications to chemistry, biology and medicine. Chem. Educ. Res. Pract. 2002;3(2):229252.

[161] Keeler J. Understanding NMR Spectroscopy. second ed. Hoboken: Wiley; 2010: 526 p.

[162] Cavanagh J. Protein NMR Spectroscopy: Principles and Practice. second ed. San Diego: Elsevier; 2007: 912 p.

[163] Wider G. Technical aspects of NMR spectroscopy with biological macromolecules and studies of hydration in solution. Prog. Nucl. Magn. Reson. Spectrosc. 1998;32(4):193275.

[164] Bordoli L, Schwede T. Automated protein structure modeling with SWISS-MODEL workspace and the protein model portal. Homology Modelling: Methods and protocols. first ed. New York: Humana Press; 2012:107136.

[165] Moult J. Predicting protein three-dimensional structure. Curr. Opin. Biotechnol. 1999;10(6):583588.

[166] Fang Q, Shortle D. Prediction of protein structure by emphasizing local side-chain/backbone interactions in ensembles of turn fragments. Proteins. 2003;(53):486490.

[167] Venselaar H, Krieger E, Vriend G. Homology modelling. In: Gu J, Bourne PE, eds. Structural Bioinformatics. second ed. Hoboken: Wiley-Blackwell; 2009:715736.

[168] Suhrer SJ, et al. Effective techniques for protein structure mining. In: Orry AJW, Abagyan R, eds. Homology Modeling: Methods and Protocols. New York: Springer; 2012:3354: (Chapter 2).

[169] Bhattacharya A, et al. Assessing model accuracy using the homology modeling automatically (HOMA) software. Proteins. 2008;70:105118.

[170] Alberts B, et al. Molecular Biology of the Cell. sixth ed. New York: Garland Science; 2015: 1464 p.

[171] Arnold K. The Swiss-Model workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195201.

[172] Wallner B, Elofsson A. All are not equal: a benchmark of different homology modeling programs. Protein Sci. 2005;14(5):13151327.

[173] Altschul SF, et al. Basic local alignment search tool. J. Mol. Biol. 1990;215(3):403410.

[174] Camacho C, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.

[175] Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-Pdb Viewer: a historical perspective. Electrophoresis. 2009;30:S162S173.

[176] Venclovas C. Methods for sequence–structure alignment. In: Orry AJW, Abagyan R, eds. Homology Modeling: Methods and Protocols. New York: Springer; 2012:5582: (Chapter3).

[177] Ramachandran S, Dokholyan NV. Homology modeling: generating structural models to understand protein function and mechanism. In: Dokholyan N, ed. Computational Modeling of Biological Systems: From Molecules to Pathways. Ney York: Springer; 2012:97116.

[178] Xiang Z. Advances in homology protein structure modeling. Curr. Protein Pept. Sci. 2006;7(3):217227.

[179] Rodriguez R. Homology modeling, model and software evaluation: three related resources. Bioinformatics. 1998;14(6):523528.

[180] Sanchez R, Sali A. Comparative protein structure modeling. In: Webster DM, ed. Protein Structure Prediction: Methods and Protocols. New York: Kluwer; 2000:97130: (Chapter 6).

[181] Ierich JCM, et al. A Computational protein structure refinement of the yeast acetohydroxy acid synthase. J. Braz. Chem. Soc. 2015;26(8):17021709.

[182] Gonzalez T, Díaz-Herrera J. Computing Handbook: Computer Science and Software Engineering. third ed. Boca Raton: CRC Press; 2014: 2326 p.

[183] Palermo G, De Vivo M. Computational chemistry for drug discovery. In: Bhushan B, ed. Encyclopedia of Nanotechnology. first ed. New York: Springer; 2015:115.

[184] Fauci AS, Marston HD. Ending AIDS—is an HIV vaccine necessary? N. Engl. J. Med. 2014;370(6):495498.

[185] Kent SJ, et al. The search for an HIV cure: tackling latent infection. Lancet Infect. Dis. 2013;13(7):614621.

[186] Katlama C. Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs. Lancet. 2013;381(9883):21092117.

[187] Jorgensen WL. The many roles of computation in drug discovery. Science. 2004;303(5665):18131818.

[188] Lombardino JG, Lowe JA. The role of the medicinal chemist in drug discovery—then and now. Nat. Rev. Drug Discov. 2004;3(10):853862.

[189] Babine RE, Bender SL. Molecular recognition of protein-ligand complexes: applications to drug design. Chem. Rev. 1997;97(5):13591472.

[190] Lybrand TP. Ligand-protein docking and rational drug design. Curr. Opin. Struct. Biol. 1995;5(2):224228.

[191] Carvalho I, Borges ADL, Bernardes LSC. Medicinal chemistry and molecular modeling: an integration to teach drug structure—activity relationship and the molecular basis of drug action. J. Chem. Educ. 2005;84(4):588596.

[192] Anderson AC. The process of structure-based drug design. Chem. Biol. 2003;10(9):787797.

[193] Singh S, Malik BK, Sharma DK. Molecular drug targets and structure based drug design: a holistic approach. Bioinformation. 2006;1(8):314320.

[194] Leite FL et al. Nanoneurobiophysics: new challenges for diagnosis and therapy of neurologic disorders. Nanomedicine (London). 2015;10(23):34173419.

[195] Garcia PS, et al. A Nanobiosensor based on 4-hydroxyphenylpyruvate dioxygenase enzyme for mesotrione detection. IEEE Sens. J. 2015;15(4):21062113.

[196] Steffens C, et al. Atomic force microscope microcantilevers used as sensors for monitoring humidity. Microelectron. Eng. 2014;113:8085.

[197] Steffens C, et al. Microcantilever sensors coated with a sensitive polyaniline layer for detecting volatile organic compounds. J. Nanosci. Nanotechnol. 2014;14:67186722.

[198] Da Silva A, et al. Nanobiosensors based on chemically modified AFM probes: a useful tool for metsulfuron-methyl detection. Sensors. 2013;13(2):14771489.

[199] Bueno CC, et al. Nanobiosensor for Diclofop detection based on chemically modified AFM probes. IEEE Sens. J. 2014;14(5):14671475.

[200] Deda DK, et al. The use of functionalized AFM tips as molecular sensors in the detection of pesticides. Mat. Res. 2013;16(3):683687.

[201] Moraes AS, et al. Evidences of detection of atrazine herbicide by atomic force spectroscopy: a promising tool for environmental sensoring. Acta Microscopica. 2015;24(1):5363.

[202] Higa AM, et al. Ag-nanoparticle-based nano-immunosensor for anti-glutathione S-transferase detection. Biointerface Res. Appl. Chem. 2016;6(1):10531058.

[203] Amarante AM, et al. Modeling the coverage of an AFM tip by enzymes and its application in nanobiosensors. J. Mol. Graph. Model. 2014;53:100104.

[204] Leite FL, et al. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy. IJMS. 2012;13(12):1277312856.

[205] Cai X, Liu W, Chen S. Environmental effects of inclusion complexation between methylated beta-cyclodextrin and diclofop-methyl. J. Agric. Food. Chem. 2005;53(17):67446749.

[206] Lu Y, et al. Stereo selective behaviour of diclofop-methyl and diclofop during cabbage pickling. Food Chem. 2011;129(4):16901694.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset