10
Rank‐Based Shrinkage Estimation

This chapter introduces the R‐estimates and provides a comparative study of ridge regression estimator (RRE), least absolute shrinkage and selection operator (LASSO), preliminary test estimator (PTE) and the Stein‐type estimator based on the theory of rank‐based statistics and the nonorthogonality design matrix of a given linear model.

10.1 Introduction

It is well known that the usual rank estimators (REs) are robust in the linear regression models, asymptotically unbiased with minimum variance. But, the data analyst may point out some deficiency with the R‐estimators when one considers the “prediction accuracy” and “interpretation.” To overcome these concerns, we propose the rank‐based least absolute shrinkage and selection operator (RLASSO) estimator. It defines a continuous shrinking operation that can produce coefficients that are exactly “zero” and competitive with the rank‐based “subset selection” and RRE, retaining the good properties of both the R‐estimators. RLASSO simultaneously estimates and selects the coefficients of a given linear regression model.

However, there are rank‐based PTEs and Stein‐type estimators (see Saleh 2006; Jureckova and Sen 1996, and Puri and Sen 1986). These R‐estimators provide estimators which shrink toward the target value and do not select coefficients for appropriate prediction and interpretations. Hoerl and Kennard (1970) introduced ridge regression based on the Tikhonov (1963) regularization, and Tibshirani (1996) introduced the LASSO estimators in a parametric formulation. The methodology is minimization of least squares objective function subject to images‐ and images‐penalty restrictions. However, the images penalty does not produce a sparse solution, but the images‐penalty does.

This chapter points to the useful aspects of RLASSO and the rank‐based ridge regression R‐estimators as well as the limitations. Conclusions are based on asymptotic images‐risk lower bound of RLASSO with the actual asymptotic images risk of other R‐estimators.

10.2 Linear Model and Rank Estimation

Consider the multiple linear model,

(10.1)equation

where images, images is the images matrix of real numbers, images is the intercept parameter, and images is the images‐vector of regression parameters. We assume that:

  1. Errors images are independently and identically distributed (i.i.d.) random variables with (unknown) cumulative distributional function (c.d.f.) images having absolutely continuous probability density function (p.d.f.) images with finite and nonzero Fisher information
    (10.2)equation
  2. For the definition of the linear rank statistics, we consider the score generating function images which is assumed to be nonconstant, non‐decreasing, and square integrable on images so that
    (10.3)equation

    The scores are defined in either of the following ways:

    equation
    for images, where images are order statistics from a sample of size images from images.
  3. Let
    (10.4)equation
    where images is the imagesth row of images and images, images. We assume that
    1. images
    2. images

For the R‐estimation of the parameter images, define for images the rank of images among images by images. Then for each images, consider the set of scores images and define the vector of linear rank statistics

(10.5)equation

Since images are translation invariant, there is no need of adjustment for the intercept parameter images.

If we set images for images, then the unrestricted RE is defined by any central point of the set

(10.6)equation

Let the RE be as images. Then, using the uniform asymptotic linearity of Jureckova (1971),

(10.7)equation

for any images and images. Then, it is well‐known that

(10.8)equation

where

(10.9)equation

and

equation

Similarly, when images, the model reduces to

(10.10)equation

Accordingly, for the R‐estimation of images, in this case, we define rank of images among

equation

as images. Then, for each images, consider the set of scores images and define the vector of linear rank statistics

(10.11)equation

where

(10.12)equation

Then, define the restricted RE of images as

(10.13)equation

which satisfy the following equality

(10.14)equation

where images, for any images and images. Then, it follows that

(10.15)equation

We are basically interested in the R‐estimation of images when it is suspected the sparsity condition images may hold. Under the given setup, the RE is written as

(10.16)equation

where images and images are images and images vectors, respectively; and if images is satisfied, then the restricted RE of images is

(10.17)equation

where images is defined by (10.13).

In this section, we are interested in the study of some shrinkage estimators stemming from images and images. In order to look at the performance characteristics of several R‐estimators, we use the two components asymptotic weighted images‐risk function

(10.18)equation

where images is any estimator of the form images of images.

Note that images so that the marginal distribution of images and images are given by

(10.19)equation

Hence, asymptotic distributional weighted images risk of images is given by

(10.20)equation

For the test of sparsity images, we define the aligned rank statistic

(10.21)equation

and images. Further, it is shown (see, Puri and Sen 1986) that

(10.22)equation

It is easy to see that under images, images has asymptotically the chi‐square distribution with images degrees of freedom (DF) and under the sequence of local alternatives images defined by

(10.23)equation

For a suitable estimator images of images, we denote by

(10.24)equation

where we assume that images is non‐degenerate.

One may find the asymptotic distributional weighted images risks are

(10.25)equation

where

(10.26)equation

Our focus in this chapter is the comparative study of performance properties of these rank‐based penalty R‐estimators and PTEs and Stein‐type R‐estimators. We refer to Saleh (2006) for the comparative study of the PTEs and Stein‐type estimators. We extend the study to include penalty estimators which have not been done yet.

Now, we recall several results that form the asymptotic distribution of

equation

For the RE given by images, we see under regularity condition and Eq. (10.22),

(10.27)equation

where images.

As a consequence, the asymptotic marginal distribution of images (images) under local alternatives

equation

is given by

(10.28)equation

where images is imagesth diagonal of images.

10.2.1 Penalty R‐Estimators

In this section, we consider three basic penalty estimators, namely:

  1. The hard threshold estimator (HTE) (Donoho and Johnstone 1994),
  2. The LASSO by Tibshirani (1996),
  3. The RRE by Hoerl and Kennard (1970).

Motivated by the idea that only few regression coefficients contribute signal, we consider threshold rules that retain only observed data that exceed a multiple of the noise level. Accordingly, we consider the “subset selection” rule given by Donoho and Johnstone (1994) known as the “hard threshold” rule as given by

(10.29)equation

where images is the imagesth element of images and images is an indicator function of the set images. The quantity images is called the threshold parameter. The components of images are kept as images if they are significant and zero, otherwise. It is apparent that each component of images is a PTE of the predictor concerned. The components of images are PTEs and discrete variables and lose some optimality properties. Hence, one may define a continuous version of (10.29) based on marginal distribution of images (images).

In accordance with the principle of the PTE approach (see Saleh 2006), we define the Stein‐type estimator as the continuous version of PTE based on the marginal distribution of

equation

given by

equation

See Saleh (2006, p. 83) for more details.

Another continuous version proposed by Tibshirani (1996) and Donoho and Johnstone (1994) is called the LASSO. In order to develop LASSO for our case, we propose the following modified R LASSO (MRL) given by

(10.30)equation

where for images,

(10.31)equation

The estimator images defines a continuous shrinkage operation that produces a sparse solution which may be derived as follows:

One may show that images is the solution of the equation

(10.32)equation

Thus, the imagesth component of (10.32) equals

(10.33)equation

Now, consider three cases, images and 0. We can show that the asymptotic distributional expressions for images is given by

(10.34)equation

Finally, we consider the R ridge regression estimator (RRRE) of images. They are obtained using marginal distributions of images, images, as

(10.35)equation

to accommodate sparsity condition; see Tibshirani (1996) on the summary of properties discussed earlier.

Our problem is to compare the performance characteristics of these penalty estimators with that of the Stein‐type and preliminary test R‐estimators (PTREs) with respect to asymptotic distributional mean squared error criterion. We present the PTREs and Stein‐type R‐estimators in the next section.

10.2.2 PTREs and Stein‐type R‐Estimators

For the model (10.1), if we suspect sparsity condition, i.e. images, then the restricted R‐estimator of images is images. For the test of the null‐hypothesis images vs. images, the rank statistic for the test of images is given by

(10.36)equation

where images, images, and

equation

It is well known that under the model (10.1) and assumptions (10.2)–(10.4) as images, images follows the chi‐squared distribution with images DF Then, we define the PTE of images as

(10.37)equation

where images is the indicator function of the set images.

Similarly, we define the Stein‐type R‐estimator as

(10.38)equation

Finally, the positive rule Stein‐type estimator is given by

(10.39)equation

10.3 Asymptotic Distributional Bias and images Risk of the R‐Estimators

First, we consider the asymptotic distribution bias (ADB) and ADR of the penalty estimators.

10.3.1 Hard Threshold Estimators (Subset Selection)

It is easy to see that

(10.40)equation

where images is the c.d.f. of a noncentral chi‐square distribution with images DF and noncentrality parameter, images.

The ADR of images is given by

(10.41)equation

Since

(10.42)equation

for images. Hence,

(10.43)equation

Note that (10.43) is free of the threshold parameter, images.

Thus, we have Lemma 10.1, which gives the asymptotic distributional upper bound (ADUB) of images as

(10.44)equation

If we have a sparse solution with images coefficients images (images) and images zero coefficients, then

(10.47)equation

Then, the ADUB of the weighted images‐risk is given by

(10.48)equation

is independent of the threshold parameter, images.

10.3.2 Rank‐based LASSO

The ADB and ADR of images are given by

(10.49)equation

and

(10.50)equation

where

(10.51)equation

Hence, the following Lemma 10.2 gives the ADUB of images‐risk of images.

As for the sparse solution, the weighted images‐risk upper bound are given by

(10.53)equation

independent of images.

Next, we consider “asymptotic oracle for orthogonal linear projection” (AOOLP) in the following section.

10.3.3 Multivariate Normal Decision Theory and Oracles for Diagonal Linear Projection

Consider the following problem in multivariate normal decision theory. We are given the least‐squares estimator (LSE) of images, namely, images according to

(10.54)equation

where images is the marginal variance of images, images, and noise level and images are the object of interest. We measure the quality of the estimator based on images‐loss and define the risk as

(10.55)equation

If there is a sparse solution, then use the (10.18) formulation. We consider a family of diagonal linear projections,

(10.56)equation

Such estimators “keep” or “kill” the coordinate. The ideal diagonal coefficients, images are in this case images. These coefficients estimate those images's which are larger than the noise level images, yielding the asymptotic lower bound on the risk as

(10.57)equation

As a special case of (10.57), we obtain

(10.58)equation

In general, the risk images cannot be attained for all images by any estimator, linear or nonlinear. However, for the sparse case, if images is the number of nonzero coefficients, images and images is the number of zero coefficients, then (10.58) reduces to the lower bound given by

(10.59)equation

Consequently, the weighted images‐risk lower bound is given by

(10.60)equation

10.4 Comparison of Estimators

In this section, we compare various estimators with respect to the unrestricted R‐estimator (URE), in terms of relative weighted images‐risk efficiency (RWRE).

10.4.1 Comparison of RE with Restricted RE

In this case, the RWRE of restricted R‐estimator versus RE is given by

(10.61)equation

where images. The images is a decreasing function of images. So,

equation

In order to compute images, we need to find images, images, and images. These are obtained by generating explanatory variables using the following equation following McDonald and Galarneau (1975),

(10.62)equation

where images are independent images pseudorandom numbers and images is the correlation between any two explanatory variables. In this study, we take images, and 0.9, which shows the variables are lightly collinear and severely collinear. In our case, we chose images and various images. The resulting output is then used to compute images.

10.4.2 Comparison of RE with PTRE

Here, the RWRE expression for PTRE vs. RE is given by

(10.63)equation

where

equation

Then, the PTRE outperforms the RE for

(10.64)equation

Otherwise, RE outperforms the PTRE in the interval images. We may mention that images is a decreasing function of images with a maximum at images, then it decreases crossing the 1‐line to a minimum at images with a value images, and then increases toward 1‐line.

The RWRE expression for PTRE vs. RE belongs to the interval

equation

where images depends on the size images and given by

equation

The quantity images is the value images at which the RWRE value is minimum.

10.4.3 Comparison of RE with SRE and PRSRE

To express the RWRE of SRE and PRSRE, we assume always that images. We have then

(10.65)equation

It is a decreasing function of images. At images, its value is images and when images, its value goes to 1. Hence, for images,

equation

Also,

(10.66)equation

So that,

equation

We also provide a graphical representation (Figure 10.1) of RWRE of the estimators for images and images.

Graphs depicting relative-weighted L2-risk efficiencies for the restricted, preliminary test, Stein-type and its positive-rule R-estimators.

Figure 10.1 RWRE for the restricted, preliminary test, Stein‐type, and its positive‐rule R‐estimators.

10.4.4 Comparison of RE and Restricted RE with RRRE

First, we consider the weighted images‐risk difference of RE and RRRE given by

(10.67)equation

Hence, RRRE outperforms the RE uniformly. Similarly, for the restricted RE and RRRE, the weighted images‐risk difference is given by

(10.68)equation

If images, then (10.68) is negative. The restricted RE outperforms RRRE at this point. Solving the equation

(10.69)equation

we get

(10.70)equation

If images, then the restricted RE outperforms the RRRE, and if images, RRRE performs better than the restricted RE. Thus, neither restricted RE nor RRRE outperforms the other uniformly.

In addition, the RWRE of RRRE versus RE equals

(10.71)equation

which is a decreasing function of images with maximum images at images and minimum 1 as images. So,

equation

10.4.5 Comparison of RRRE with PTRE, SRE, and PRSRE

Here, the weighted images‐risk difference of PTRE and RRRE is given by

(10.72)equation

Since the first term is a decreasing function of images with a maximum value images at images and tends to 0 as images. The second function in brackets is also decreasing in images with maximum images at images which is less than images, and the function tends to 0 as images. Hence, (10.72) is nonnegative for images. Hence, the RRRE uniformly performs better than the PTRE.

Similarly, we show the RRE uniformly performs better than the SRE, i.e. the weighted images risk of images and images is given by

(10.73)equation

The weighted images‐risk difference of SRE and RRRE is given by

equation

Since the first function decreases with a maximum value images at images, the second function decreases with a maximum value images and tends to 0 as images. Hence, the two functions are one below the other and the difference is nonnegative for images.

Next, we show that the weighted images risk (WimagesR) of the two estimators may be ordered as

equation

Note that

(10.74)equation

where images is defined by Eq. (9.70).

Thus, we find that the WimagesR difference is given by

(10.75)equation

Hence, the RRE uniformly performs better than the PRSRE.

10.4.6 Comparison of RLASSO with RE and Restricted RE

First, note that if images coefficients images and images coefficients are zero in a sparse solution, the lower bound of the weighted images risk is given by images. Thereby, we compare all estimators relative to this quantity. Hence, the WimagesR difference between RE and RLASSO is given by

(10.76)equation

Hence, if images, the RLASSO performs better than the RE; while if images, the RE performs better than the RLASSO. Consequently, neither the RE nor the RLASSO performs better than the other uniformly.

Next, we compare the restricted RE and RLASSO. In this case, the WimagesR difference is given by

(10.77)equation

Hence, the RRE uniformly performs better than the RLASSO. If images, RLASSO and RRE are images‐risk equivalent. If the RE estimators are independent, then images. Hence, RLASSO satisfies the oracle properties.

10.4.7 Comparison of RLASSO with PTRE, SRE, and PRSRE

We first consider the PTRE versus RLASSO. In this case, the WimagesR difference is given by

(10.78)equation

Hence, the RLASSO outperforms the PTRE when images. But, when images, then the RLASSO outperforms the PTRE for

(10.79)equation

Otherwise, PTRE outperforms the modified RLASSO estimator. Hence, neither PTRE nor the modified RLASSO estimator outperforms the other uniformly.

Next, we consider SRE and PRSRE versus the RLASSO. In these two cases, we have the WimagesR differences given by

(10.80)equation

and from (10.74),

(10.81)equation

where images is given by (9.70). Hence, the modified RLASSO estimator outperforms the SRE as well as the PRSRE in the interval

(10.82)equation

Thus, neither SRE nor the PRSRE outperforms the modified RLASSO estimator uniformly.

10.4.8 Comparison of Modified RLASSO with RRRE

Here, the weighted images‐risk difference is given by

(10.83)equation

Hence, the RRRE outperforms the modified RLASSO estimator, uniformly.

10.5 Summary and Concluding Remarks

In this section, we discuss the contents of Tables 10.110.10 presented as confirmatory evidence of the theoretical findings of the estimators.

Table 10.1 RWRE for the estimators for images and images.

RRE PTRE
images images
images RE 0.1 0.2 0.8 0.9 MRLASSO images 0.2 images SRE PRSRE RRRE
0 1.0000 3.7179 3.9415 5.0593 5.1990 3.3333 1.9787 1.7965 1.6565 2.0000 2.3149 3.3333
0.1 1.0000 3.5845 3.7919 4.8155 4.9419 3.2258 1.9229 1.7512 1.6194 1.9721 2.2553 3.2273
0.5 1.0000 3.1347 3.2920 4.0374 4.1259 2.8571 1.7335 1.5970 1.4923 1.8733 2.0602 2.8846
1 1.0000 2.7097 2.8265 3.3591 3.4201 2.5000 1.5541 1.4499 1.3703 1.7725 1.8843 2.5806
images 1.62 1.0000 2.3218 2.4070 2.7829 2.8246 2.1662 1.3920 1.3164 1.2590 1.6739 1.7315 2.3185
2 1.0000 2.1318 2.2034 2.5143 2.5483 2.0000 1.3141 1.2520 1.2052 1.6231 1.6597 2.1951
images 2.03 1.0000 2.1181 2.1887 2.4952 2.5287 1.9879 1.3085 1.2474 1.2014 1.6194 1.6545 2.1863
3 1.0000 1.7571 1.8054 2.0091 2.0308 1.6667 1.1664 1.1302 1.1035 1.5184 1.5245 1.9608
images 3.23 1.0000 1.6879 1.7324 1.9191 1.9388 1.6042 1.1404 1.1088 1.0857 1.4983 1.5006 1.9187
images 3.33 1.0000 1.6601 1.7031 1.8832 1.9023 1.5791 1.1302 1.1004 1.0787 1.4903 1.4911 1.9020
5 1.0000 1.3002 1.3264 1.4332 1.4442 1.2500 1.0088 1.0018 0.9978 1.3829 1.3729 1.6901
images 7 1.0000 1.0318 1.0483 1.1139 1.1205 1.0000 0.9419 0.9500 0.9571 1.3005 1.2910 1.5385
images 7.31 1.0000 1.0001 1.0155 1.0770 1.0832 0.9701 0.9362 0.9458 0.9541 1.2907 1.2816 1.5208
images 7.46 1.0000 0.9851 1.0001 1.0596 1.0656 0.9560 0.9337 0.9440 0.9528 1.2860 1.2771 1.5126
images 8.02 1.0000 0.9334 0.9468 1.0000 1.0054 0.9073 0.9262 0.9389 0.9493 1.2700 1.2620 1.4841
images 8.07 1.0000 0.9288 0.9421 0.9947 1.0000 0.9029 0.9256 0.9385 0.9490 1.2686 1.2606 1.4816
10 1.0000 0.7879 0.7975 0.8349 0.8386 0.7692 0.9160 0.9338 0.9473 1.2250 1.2199 1.4050
13 1.0000 0.6373 0.6435 0.6677 0.6700 0.6250 0.9269 0.9458 0.9591 1.1788 1.1766 1.3245
15 1.0000 0.5652 0.5701 0.5890 0.5909 0.5556 0.9407 0.9576 0.9690 1.1571 1.1558 1.2865
20 1.0000 0.4407 0.4437 0.4550 0.4561 0.4348 0.9722 0.9818 0.9877 1.1201 1.1199 1.2217
30 1.0000 0.3059 0.3073 0.3127 0.3132 0.3030 0.9967 0.9981 0.9989 1.0814 1.0814 1.1526
50 1.0000 0.1898 0.1903 0.1924 0.1926 0.1887 1.0000 1.0000 1.0000 1.0494 1.0494 1.0940
100 1.0000 0.0974 0.0975 0.0981 0.0981 0.0971 1.0000 1.0000 1.0000 1.0145 1.0145 1.0480

First, we note that we have two classes of estimators, namely, the traditional rank‐based PTEs and Stein‐type estimators and the penalty estimators. The restricted R‐estimators play an important role due to the fact that LASSO belongs to the class of restricted estimators. We have the following conclusion from our study.

  1. Since the inception of the RRE by Hoerl and Kennard (1970), there have been articles comparing RRE with PTE and Stein‐type estimators. We have now definitive conclusion that the RRE dominates the RE, PTRE, and Stein‐type estimators uniformly. See Tables 10.1 and 10.2 and graphs thereof in Figure 10.1. The RRRE ridge estimator dominates the modified RLASSO estimator uniformly for images, while they are images‐risk equivalent at images. The RRRE ridge estimator does not select variables, but the modified RLASSO estimator does.
  2. The restricted R‐ and modified RLASSO estimators are competitive, although the modified RLASSO estimator lags behind the restricted R‐estimator, uniformly. Both estimators outperform the URE, PTRE, SRE, and PRSRE in a subinterval of images (see Tables 10.1 and 10.2).

  1. The lower bound of images risk of HTE and the modified RLASSO estimator is the same and independent of the threshold parameter. But the upper bound of images risk is dependent on the threshold parameter.
  2. Maximum of RWRE occurs at images, which indicates that the RE underperforms all estimators for any value of images. Clearly, RRE outperforms all estimators for any images at images. However, as images deviates from 0, the rank‐based PTE and the Stein‐type estimator outperform URE, RRE, and the modified RLASSO estimator (see Tables 10.1 and 10.2).
  3. If images is fixed and images increases, the RWRE of all estimators increases (see Tables 10.7 and 10.8).
  4. If images is fixed and images increases, the RWRE of all estimators decreases. Then, for images small and images large, the modified RLASSO, PTRE, SRE, and PRSRE are competitive (see Table 10.9 and 10.10).
  5. The PRSRE always outperforms the SRE (see Tables 10.110.10).

Table 10.2 RWRE for the estimators for images and images.

RRE PTRE
images images
images RE 0.1 0.2 0.8 0.9 MRLASSO images 0.2 images SRE PRSRE RRRE
0 1.0000 2.9890 3.0586 3.3459 3.3759 2.8571 1.9458 1.7926 1.6694 2.2222 2.4326 2.8571
0.1 1.0000 2.9450 3.0125 3.2909 3.3199 2.8169 1.9146 1.7658 1.6464 2.2017 2.3958 2.8172
0.5 1.0000 2.7811 2.8413 3.0876 3.1132 2.6667 1.8009 1.6683 1.5627 2.1255 2.2661 2.6733
1 1.0000 2.6003 2.6528 2.8664 2.8883 2.5000 1.6797 1.5648 1.4739 2.0423 2.1352 2.5225
2 1.0000 2.3011 2.3421 2.5070 2.5238 2.2222 1.4910 1.4041 1.3365 1.9065 1.9434 2.2901
images 2.14 1.0000 2.2642 2.3039 2.4633 2.4795 2.1878 1.4688 1.3854 1.3205 1.8899 1.9217 2.2628
images 2.67 1.0000 2.1354 2.1707 2.3116 2.3259 2.0673 1.3937 1.3218 1.2663 1.8323 1.8488 2.1697
3 1.0000 2.0637 2.0966 2.2278 2.2410 2.0000 1.3535 1.2878 1.2375 1.8005 1.8100 2.1192
images 4.19 1.0000 1.8378 1.8639 1.9669 1.9772 1.7872 1.2352 1.1885 1.1534 1.7014 1.6962 1.9667
images 4.31 1.0000 1.8173 1.8427 1.9433 1.9534 1.7677 1.2251 1.1801 1.1463 1.6925 1.6864 1.9533
5 1.0000 1.7106 1.7332 1.8219 1.8307 1.6667 1.1750 1.1385 1.1114 1.6464 1.6370 1.8848
7 1.0000 1.4607 1.4771 1.5411 1.5474 1.4286 1.0735 1.0554 1.0425 1.5403 1.5289 1.7316
10 1.0000 1.1982 1.2092 1.2517 1.2559 1.1765 0.9982 0.9961 0.9952 1.4319 1.4243 1.5808
15 1.0000 2.0533 2.0685 2.0958 2.0966 1.8182 1.0934 1.0694 1.0529 2.1262 2.1157 2.3105
images 13 1.0000 1.0156 1.0236 1.0539 1.0568 1.0000 0.9711 0.9767 0.9811 1.3588 1.3547 1.4815
images 13.31 1.0000 1.0000 1.0077 1.0370 1.0399 0.9848 0.9699 0.9760 0.9807 1.3526 1.3488 1.4732
images 13.46 1.0000 0.9925 1.0000 1.0289 1.0318 0.9775 0.9694 0.9757 0.9805 1.3496 1.3459 1.4692
images 14.02 1.0000 0.9655 0.9727 1.0000 1.0027 0.9514 0.9679 0.9749 0.9801 1.3391 1.3358 1.4550
images 14.07 1.0000 0.9631 0.9702 0.9974 1.0000 0.9490 0.9678 0.9748 0.9801 1.3381 1.3349 1.4537
15 1.0000 0.9220 0.9285 0.9534 0.9558 0.9091 0.9667 0.9745 0.9802 1.3221 1.3195 1.4322
20 1.0000 0.7493 0.7536 0.7699 0.7715 0.7407 0.9743 0.9820 0.9870 1.2560 1.2553 1.3442
30 1.0000 0.5451 0.5473 0.5559 0.5567 0.5405 0.9940 0.9964 0.9977 1.1809 1.1808 1.2446
50 1.0000 0.3528 0.3537 0.3573 0.3576 0.3509 0.9999 1.0000 1.0000 1.1136 1.1136 1.1549
100 1.0000 0.1875 0.1877 0.1887 0.1888 0.1869 1.0000 1.0000 1.0000 1.0337 1.0337 1.0808

Finally, we present the RWRE formula from which we prepared our tables and figures, for a quick summary.

equation

Now, we describe Table 10.1. This table presents RWRE of the seven estimators for images, images, and images, images against images‐values using a sample of size images, the images matrix is produced. Using the model given by Eq. (10.62) for chosen values, images and images. Therefore, the RWRE value of RLSE has four entries – two for low correlation and two for high correlation. Some images‐values are given as images and images for chosen images‐values. Now, one may use the table for the performance characteristics of each estimator compared to any other.

Tables 10.210.3 give the RWRE values of estimators for images, and 7 for images, and 30.

Table 10.3 RWRE of the R‐estimators for images and different images‐values for varying images.

Estimators images images images images images images images images
images images
RE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RRE (images) 5.6807 3.7105 2.1589 1.4946 3.6213 2.7059 1.7755 1.3003
RRE (images) 6.1242 3.9296 2.2357 1.5291 3.7959 2.8204 1.8271 1.3262
RRE (images) 9.4863 5.0497 2.5478 1.6721 4.8660 3.3549 2.0304 1.4325
RRE (images) 10.1255 5.1921 2.5793 1.6884 5.0292 3.4171 2.0504 1.4445
RLASSO 5.0000 3.3333 2.0000 1.4286 3.3333 2.5000 1.6667 1.2500
PTRE (images) 2.3441 1.9787 1.5122 1.2292 1.7548 1.5541 1.2714 1.0873
PTRE (images) 2.0655 1.7965 1.4292 1.1928 1.6044 1.4499 1.2228 1.0698
PTRE (images) 1.8615 1.6565 1.3616 1.1626 1.4925 1.3703 1.1846 1.0564
SRE 2.5000 2.0000 1.4286 1.1111 2.1364 1.7725 1.3293 1.0781
PRSRE 3.0354 2.3149 1.5625 1.1625 2.3107 1.8843 1.3825 1.1026
RRRE 5.0000 3.3333 2.0000 1.4286 3.4615 2.5806 1.7143 1.2903
images images
RE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RRE (images) 1.4787 1.2993 1.0381 0.8554 0.8501 0.7876 0.6834 0.5991
RRE (images) 1.5069 1.3251 1.0555 0.8665 0.8594 0.7970 0.6909 0.6046
RRE (images) 1.6513 1.4324 1.1204 0.9107 0.9045 0.8346 0.7181 0.6257
RRE (images) 1.6698 1.4437 1.1264 0.9155 0.9100 0.8384 0.7206 0.6280
RLASSO 1.4286 1.2500 1.0000 0.8333 0.8333 0.7692 0.6667 0.5882
PTRE (images) 1.0515 1.0088 0.9465 0.9169 0.9208 0.9160 0.9176 0.9369
PTRE (images) 1.0357 1.0018 0.9530 0.9323 0.9366 0.9338 0.9374 0.9545
PTRE (images) 1.0250 0.9978 0.9591 0.9447 0.9488 0.9473 0.9517 0.9665
SRE 1.5516 1.3829 1.1546 1.0263 1.3238 1.2250 1.0865 1.0117
PRSRE 1.5374 1.3729 1.1505 1.0268 1.3165 1.2199 1.0843 1.0114
RRRE 1.9697 1.6901 1.3333 1.1268 1.5517 1.4050 1.2000 1.0744
images images
RE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RRE (images) 0.4595 0.4406 0.4060 0.3747 0.1619 0.1595 0.1547 0.1499
RRE (images) 0.4622 0.4435 0.4086 0.3768 0.1622 0.1599 0.1551 0.1503
RRE (images) 0.4749 0.4549 0.4180 0.3849 0.1638 0.1613 0.1564 0.1516
RRE (images) 0.4764 0.4561 0.4188 0.3858 0.1640 0.1615 0.1566 0.1517
RLASSO 0.4545 0.4348 0.4000 0.3704 0.1613 0.1587 0.1538 0.1493
PTRE (images) 0.9673 0.9722 0.9826 0.9922 1.0000 1.0000 1.0000 1.0000
PTRE (images) 0.9783 0.9818 0.9890 0.9954 1.0000 1.0000 1.0000 1.0000
PTRE (images) 0.9850 0.9877 0.9928 0.9971 1.0000 1.0000 1.0000 1.0000
SRE 1.1732 1.1201 1.0445 1.0053 1.0595 1.0412 1.0150 1.0017
PRSRE 1.1728 1.1199 1.0444 1.0053 1.0595 1.0412 1.0150 1.0017
RRRE 1.2963 1.2217 1.1111 1.0407 1.1039 1.0789 1.0400 1.0145

Table 10.4 gives the RWRE values of estimators for images and images, and 55, and also for images and images, and 53. Also, Table 10.5 presents the RWRE values of estimators for images and images, and 57 as well as images and images, and 53 to see the effect of images variation on RWRE (Figures 10.2 and 10.3).

Table 10.4 RWRE of the R‐estimators for images and different images‐values for varying images.

Estimators images images images images images images images images
images images
RE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RRE (images) 9.1045 5.9788 3.4558 2.3953 5.6626 4.2736 2.8084 2.0654
RRE (images) 9.8493 6.3606 3.6039 2.4653 5.9410 4.4650 2.9055 2.1172
RRE (images) 15.1589 8.0862 4.0566 2.6637 7.5344 5.2523 3.1928 2.2620
RRE (images) 16.1151 8.2786 4.0949 2.6780 7.7633 5.3329 3.2165 2.2723
RLASSO 7.5000 5.0000 3.0000 2.1429 5.0000 3.7500 2.5000 1.8750
PTRE (images) 2.8417 2.4667 1.9533 1.6188 2.1718 1.9542 1.6304 1.4021
PTRE (images) 2.4362 2.1739 1.7905 1.5242 1.9277 1.7680 1.5192 1.3354
PTRE (images) 2.1488 1.9568 1.6617 1.4462 1.7505 1.6288 1.4325 1.2820
SRE 3.7500 3.0000 2.1429 1.6667 3.1296 2.5964 1.9385 1.5495
PRSRE 4.6560 3.5445 2.3971 1.8084 3.4352 2.7966 2.0402 1.6081
RRRE 7.5000 5.0000 3.0000 2.1429 5.1220 3.8235 2.5385 1.9014
images images
RE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RRE (images) 2.2555 1.9970 1.6056 1.3318 1.2875 1.1989 1.0458 0.9223
RRE (images) 2.2983 2.0378 1.6369 1.3531 1.3013 1.2134 1.0590 0.9325
RRE (images) 2.5034 2.1876 1.7244 1.4109 1.3646 1.2651 1.0950 0.9596
RRE (images) 2.5282 2.2015 1.7313 1.4149 1.3720 1.2697 1.0977 0.9614
RLASSO 2.1429 1.8750 1.5000 1.2500 1.2500 1.1538 1.0000 0.8824
PTRE (images) 1.2477 1.1936 1.1034 1.0338 0.9976 0.9828 0.9598 0.9458
PTRE (images) 1.1936 1.1510 1.0793 1.0235 0.9948 0.9836 0.9665 0.9568
PTRE (images) 1.1542 1.1200 1.0619 1.0166 0.9936 0.9850 0.9721 0.9653
SRE 2.0987 1.8655 1.5332 1.3106 1.6727 1.5403 1.3382 1.1948
PRSRE 2.0783 1.8494 1.5227 1.3038 1.6589 1.5294 1.3315 1.1909
RRRE 2.6733 2.2973 1.8000 1.4885 1.9602 1.7742 1.5000 1.3107
images images
RE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RRE (images) 0.6928 0.6663 0.6162 0.5711 0.2433 0.2400 0.2331 0.2264
RRE (images) 0.6968 0.6708 0.6208 0.5750 0.2438 0.2405 0.2338 0.2270
RRE (images) 0.7146 0.6863 0.6329 0.5852 0.2459 0.2425 0.2355 0.2285
RRE (images) 0.7166 0.6876 0.6339 0.5859 0.2462 0.2427 0.2356 0.2287
RLASSO 0.6818 0.6522 0.6000 0.5556 0.2419 0.2381 0.2308 0.2239
PTRE (images) 0.9660 0.9675 0.9720 0.9779 1.0000 1.0000 1.0000 1.0000
PTRE (images) 0.9761 0.9774 0.9810 0.9854 1.0000 1.0000 1.0000 1.0000
PTRE (images) 0.9828 0.9839 0.9866 0.9900 1.0000 1.0000 1.0000 1.0000
SRE 1.3731 1.3034 1.1917 1.1091 1.1318 1.1082 1.0689 1.0389
PRSRE 1.3720 1.3026 1.1912 1.1089 1.1318 1.1082 1.0689 1.0389
RRRE 1.5184 1.4286 1.2857 1.1798 1.1825 1.1538 1.1053 1.0669

Table 10.5 RWRE of the R‐estimators for images and different images‐values for varying images.

Estimators images images images images images images images images
images images
RE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RRE (images) 12.9872 8.5010 4.9167 3.4047 7.8677 5.9631 3.9460 2.9092
RRE (images) 14.0913 9.0423 5.1335 3.5107 8.2590 6.2241 4.0844 2.9863
RRE (images) 21.5624 11.4369 5.7360 3.7651 10.3661 7.2732 4.4569 3.1684
RRE (images) 22.8744 11.6969 5.7922 3.7803 10.6590 7.3774 4.4908 3.1791
RLASSO 10.0000 6.6667 4.0000 2.8571 6.6667 5.0000 3.3333 2.5000
PTRE (images) 3.2041 2.8361 2.3073 1.9458 2.4964 2.2738 1.9310 1.6797
PTRE (images) 2.6977 2.4493 2.0693 1.7926 2.1721 2.0143 1.7602 1.5648
PTRE (images) 2.3469 2.1698 1.8862 1.6694 1.9413 1.8244 1.6295 1.4739
SRE 5.0000 4.0000 2.8571 2.2222 4.1268 3.4258 2.5581 2.0423
PRSRE 6.2792 4.7722 3.2234 2.4326 4.5790 3.7253 2.7140 2.1352
RRRE 10.0000 6.6667 4.0000 2.8571 6.7857 5.0704 3.3684 2.5225
images images
RE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RRE (images) 3.0563 2.7190 2.2051 1.8390 1.7324 1.6186 1.4214 1.2598
RRE (images) 3.1135 2.7720 2.2477 1.8695 1.7507 1.6372 1.4390 1.2740
RRE (images) 3.3724 2.9625 2.3561 1.9393 1.8297 1.7019 1.4827 1.3060
RRE (images) 3.4028 2.9797 2.3656 1.9433 1.8386 1.7076 1.4864 1.3079
RLASSO 2.8571 2.5000 2.0000 1.6667 1.6667 1.5385 1.3333 1.1765
PTRE (images) 1.4223 1.3625 1.2595 1.1750 1.0788 1.0592 1.0254 0.9982
PTRE (images) 1.3324 1.2864 1.2058 1.1385 1.0580 1.0429 1.0169 0.9961
PTRE (images) 1.2671 1.2306 1.1660 1.1114 1.0437 1.0319 1.0114 0.9952
SRE 2.6519 2.3593 1.9363 1.6464 2.0283 1.8677 1.6170 1.4319
PRSRE 2.6304 2.3416 1.9237 1.6370 2.0082 1.8513 1.6059 1.4243
RRRE 3.3824 2.9139 2.2857 1.8848 2.3729 2.1514 1.8182 1.5808
images images
RE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RRE (images) 0.9283 0.8946 0.8309 0.7729 0.3250 0.3207 0.3122 0.3036
RRE (images) 0.9335 0.9002 0.8369 0.7782 0.3256 0.3215 0.3130 0.3044
RRE (images) 0.9555 0.9195 0.8515 0.7901 0.3282 0.3239 0.3150 0.3062
RRE (images) 0.9580 0.9211 0.8527 0.7908 0.3285 0.3241 0.3152 0.3063
RLASSO 0.9091 0.8696 0.8000 0.7407 0.3226 0.3175 0.3077 0.2985
PTRE (images) 0.9747 0.9737 0.9731 0.9743 1.0000 1.0000 1.0000 1.0000
PTRE (images) 0.9813 0.9808 0.9808 0.9820 1.0000 1.0000 1.0000 1.0000
PTRE (images) 0.9860 0.9857 0.9859 0.9870 1.0000 1.0000 1.0000 1.0000
SRE 1.5796 1.4978 1.3623 1.2560 1.2078 1.1811 1.1344 1.0957
PRSRE 1.5775 1.4961 1.3612 1.2553 1.2078 1.1811 1.1344 1.0957
RRRE 1.7431 1.6408 1.4737 1.3442 1.2621 1.2310 1.1765 1.1309

Table 10.6 RWRE of the R‐estimators for images and different images‐values for varying images.

Estimators images images images images images images images images
images images
RE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RRE (images) 22.3753 14.6442 8.4349 5.8203 12.8002 9.8339 6.5821 4.8740
RRE (images) 24.3855 15.6276 8.7997 6.0133 13.4302 10.2680 6.8022 5.0086
RRE (images) 37.2461 19.5764 9.7789 6.3861 16.5880 11.8373 7.3729 5.2646
RRE (images) 39.3232 20.0631 9.8674 6.4129 16.9876 12.0125 7.4229 5.2828
RLASSO 15.0000 10.0000 6.0000 4.2857 10.0000 7.5000 5.0000 3.7500
PTRE (images) 3.7076 3.3671 2.8451 2.4637 2.9782 2.7592 2.4060 2.1337
PTRE (images) 3.0508 2.8314 2.4758 2.2002 2.5244 2.3765 2.1279 1.9271
PTRE (images) 2.6089 2.4579 2.2032 1.9968 2.2107 2.1051 1.9219 1.7688
SRE 7.5000 6.0000 4.2857 3.3333 6.1243 5.0891 3.8037 3.0371
PRSRE 9.5356 7.2308 4.8740 3.6755 6.8992 5.6069 4.0788 3.2054
RRRE 15.0000 10.0000 6.0000 4.2857 10.1163 7.5676 5.0323 3.7696
images images
RE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RRE (images) 4.7273 4.2535 3.5048 2.9537 2.6439 2.4888 2.2123 1.9792
RRE (images) 4.8104 4.3328 3.5663 3.0026 2.6697 2.5158 2.2366 2.0011
RRE (images) 5.1633 4.5899 3.7172 3.0928 2.7751 2.6004 2.2951 2.0407
RRE (images) 5.2015 4.6159 3.7298 3.0991 2.7861 2.6087 2.2999 2.0435
RLASSO 4.2857 3.7500 3.0000 2.5000 2.5000 2.3077 2.0000 1.7647
PTRE (images) 1.7190 1.6538 1.5384 1.4395 1.2353 1.2113 1.1675 1.1287
PTRE (images) 1.5642 1.5158 1.4286 1.3524 1.1806 1.1622 1.1285 1.0984
PTRE (images) 1.4532 1.4159 1.3478 1.2873 1.1418 1.1273 1.1007 1.0768
SRE 3.7621 3.3545 2.7588 2.3444 2.7433 2.5307 2.1934 1.9380
PRSRE 3.7497 3.3433 2.7492 2.3362 2.7120 2.5044 2.1742 1.9237
RRRE 4.8058 4.1558 3.2727 2.7010 3.2022 2.9134 2.4706 2.1475
images images
RE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RRE (images) 1.4053 1.3603 1.2733 1.1925 0.4890 0.4834 0.4720 0.4604
RRE (images) 1.4126 1.3683 1.2813 1.2004 0.4899 0.4845 0.4731 0.4616
RRE (images) 1.4416 1.3930 1.3003 1.2145 0.4933 0.4875 0.4756 0.4637
RRE (images) 1.4445 1.3953 1.3018 1.2155 0.4937 0.4878 0.4759 0.4638
RLASSO 1.3636 1.3043 1.2000 1.1111 0.4839 0.4762 0.4615 0.4478
PTRE (images) 1.0081 1.0040 0.9969 0.9912 0.9999 0.9999 0.9999 1.0000
PTRE (images) 1.0047 1.0018 0.9968 0.9928 1.0000 1.0000 1.0000 1.0000
PTRE (images) 1.0027 1.0006 0.9970 0.9942 1.0000 1.0000 1.0000 1.0000
SRE 1.9969 1.8948 1.7215 1.5804 1.3630 1.3320 1.2759 1.2268
PRSRE 1.9921 1.8907 1.7185 1.5782 1.3630 1.3320 1.2759 1.2268
RRRE 2.1951 2.0705 1.8621 1.6951 1.4224 1.3876 1.3247 1.2698
Graphs depicting relative-weighted L2-risk efficiencies for the modified RLASSO (MRLASSO), ridge, restricted, preliminary test, Stein-type and its positive rule estimators.

Figure 10.2 RWRE for the modified RLASSO (MRLASSO), ridge, restricted, preliminary test and the Stein‐type and its positive rule estimators.

Graphs depicting relative-weighted L2-risk efficiencies of R-estimates of a function of D2 for p1 = 3, p2 = 0.9 and different p2 values.

Figure 10.3 RWRE of R‐estimates of a function of images for images, images, and different images.

Table 10.7 RWRE values of estimators for images and different values of images and images.

RRE PTRE
images images
images RE 0.8 0.9 MRLASSO 0.15 0.2 0.25 SRE PRSRE RRRE
images
7 1.0000 4.0468 4.1621 3.3333 2.6044 1.9787 1.6565 2.0000 2.3149 3.3333
17 1.0000 10.2978 10.5396 6.6667 4.3870 2.8361 2.1698 4.0000 4.7722 6.6667
27 1.0000 18.3009 18.7144 10.0000 5.7507 3.3671 2.4579 6.0000 7.2308 10.0000
37 1.0000 28.9022 29.4914 13.3333 6.8414 3.7368 2.6477 8.0000 9.6941 13.3333
57 1.0000 64.9968 66.2169 20.0000 8.4968 4.2281 2.8887 12.0000 14.6307 20.0000
images
7 1.0000 3.2295 3.3026 2.8571 2.2117 1.7335 1.4923 1.8733 2.0602 2.8846
17 1.0000 8.0048 8.1499 5.7143 3.7699 2.5211 1.9784 3.6834 4.1609 5.7377
27 1.0000 13.7847 14.0169 8.5714 4.9963 3.0321 2.2657 5.4994 6.2907 8.5938
37 1.0000 20.9166 21.2239 11.4286 5.9990 3.3986 2.4608 7.3167 8.4350 11.4504
57 1.0000 41.5401 42.0259 17.1429 7.5598 3.8998 2.7153 10.9521 12.7487 17.1642
images
7 1.0000 2.6869 2.7373 2.5000 1.9266 1.5541 1.3703 1.7725 1.8843 2.5806
17 1.0000 6.5476 6.6443 5.0000 3.3014 2.2738 1.8244 3.4258 3.7253 5.0704
27 1.0000 11.0584 11.2071 7.5000 4.4087 2.7592 2.1051 5.0891 5.6069 7.5676
37 1.0000 16.3946 16.5829 10.0000 5.3306 3.1162 2.3008 6.7542 7.5071 10.0662
57 1.0000 30.5579 30.8182 15.0000 6.7954 3.6170 2.5624 10.0860 11.3392 15.0649
images
7 1.0000 1.1465 1.1556 1.2500 1.0489 1.0088 0.9978 1.3829 1.3729 1.6901
17 1.0000 2.6666 2.6824 2.5000 1.6731 1.3625 1.2306 2.3593 2.3416 2.9139
27 1.0000 4.2854 4.3074 3.7500 2.2360 1.6538 1.4159 3.3545 3.3433 4.1558
37 1.0000 6.0123 6.0376 5.0000 2.7442 1.8968 1.5652 4.3528 4.3574 5.4019
57 1.0000 9.8282 9.8547 7.5000 3.6311 2.2844 1.7942 6.3514 6.4081 7.8981

Table 10.8 RWRE values of estimators for images and different values of images and images.

RRE PTRE
images images
images RE 0.8 0.9 MRLASSO 0.15 0.2 0.25 SRE PRSRE RRRE
images
3 1.0000 2.0072 2.0250 1.4286 1.3333 1.2292 1.1626 1.1111 1.1625 1.4286
13 1.0000 4.1385 4.1573 2.8571 2.4147 1.9458 1.6694 2.2222 2.4326 2.8571
23 1.0000 6.8094 6.8430 4.2857 3.3490 2.4637 1.9968 3.3333 3.6755 4.2857
33 1.0000 10.2779 10.3259 5.7143 4.1679 2.8587 2.2279 4.4444 4.9176 5.7143
53 1.0000 21.7368 21.7965 8.5714 5.5442 3.4283 2.5371 6.6667 7.4030 8.5714
images
3 1.0000 1.8523 1.8674 1.3333 1.2307 1.1485 1.1015 1.0928 1.1282 1.3462
13 1.0000 3.7826 3.7983 2.6667 2.2203 1.8009 1.5627 2.1255 2.2661 2.6733
23 1.0000 6.1542 6.1815 4.0000 3.0831 2.2860 1.8742 3.1754 3.4159 4.0057
33 1.0000 9.1562 9.1942 5.3333 3.8441 2.6619 2.0987 4.2270 4.5705 5.3386
53 1.0000 18.4860 18.5298 8.0000 5.1338 3.2133 2.4055 6.3313 6.8869 8.0050
images
3 1.0000 1.7196 1.7326 1.2500 1.1485 1.0873 1.0564 1.0781 1.1026 1.2903
13 1.0000 3.4830 3.4963 2.5000 2.0544 1.6797 1.4739 2.0423 2.1352 2.5225
23 1.0000 5.6140 5.6367 3.7500 2.8534 2.1337 1.7688 3.0371 3.2054 3.7696
33 1.0000 8.2554 8.2862 5.0000 3.5625 2.4906 1.9856 4.0350 4.2840 5.0185
53 1.0000 16.0828 16.1162 7.5000 4.7733 3.0225 2.2877 6.0331 6.4531 7.5174
images
3 1.0000 1.0930 1.0983 0.8333 0.8688 0.9169 0.9447 1.0263 1.0268 1.1268
13 1.0000 2.1324 2.1374 1.6667 1.3171 1.1750 1.1114 1.6464 1.6370 1.8848
23 1.0000 3.2985 3.3063 2.5000 1.7768 1.4395 1.2873 2.3444 2.3362 2.7010
33 1.0000 4.6206 4.6302 3.3333 2.2057 1.6701 1.4360 3.0520 3.0505 3.5267
53 1.0000 7.8891 7.8973 5.0000 2.9764 2.0491 1.6701 4.4745 4.4980 5.1863

Table 10.9 RWRE values of estimators for images and different values of images and images.

RRE PTRE
images images
images RE 0.8 0.9 MRLASSO 0.15 0.2 0.25 SRE PRSRE RRRE
images
7 1.0000 2.0384 2.0631 1.4286 1.3333 1.2292 1.1626 1.1111 1.1625 1.4286
17 1.0000 1.3348 1.3378 1.1765 1.1428 1.1028 1.0752 1.0526 1.0751 1.1765
27 1.0000 1.2136 1.2150 1.1111 1.0909 1.0663 1.0489 1.0345 1.0489 1.1111
37 1.0000 1.1638 1.1642 1.0811 1.0667 1.0489 1.0362 1.0256 1.0362 1.0811
57 1.0000 1.1188 1.1190 1.0526 1.0435 1.0321 1.0239 1.0169 1.0238 1.0526
images
7 1.0000 1.8080 1.8274 1.3333 1.2307 1.1485 1.1015 1.0928 1.1282 1.3462
17 1.0000 1.2871 1.2898 1.1429 1.1034 1.0691 1.0483 1.0443 1.0602 1.1475
27 1.0000 1.1879 1.1892 1.0909 1.0667 1.0450 1.0317 1.0291 1.0394 1.0938
37 1.0000 1.1462 1.1467 1.0667 1.0492 1.0334 1.0236 1.0217 1.0292 1.0687
57 1.0000 1.1081 1.1083 1.0435 1.0323 1.0220 1.0156 1.0144 1.0193 1.0448
images
7 1.0000 1.6244 1.6401 1.2500 1.1485 1.0873 1.0564 1.0781 1.1026 1.2903
17 1.0000 1.2427 1.2452 1.1111 1.0691 1.0418 1.0274 1.0376 1.0488 1.1268
27 1.0000 1.1632 1.1645 1.0714 1.0450 1.0275 1.0181 1.0248 1.0320 1.0811
37 1.0000 1.1292 1.1296 1.0526 1.0334 1.0205 1.0135 1.0185 1.0238 1.0596
57 1.0000 1.0976 1.0978 1.0345 1.0220 1.0136 1.0090 1.0122 1.0158 1.0390
images
7 1.0000 0.8963 0.9011 0.8333 0.8688 0.9169 0.9447 1.0263 1.0268 1.1268
17 1.0000 0.9738 0.9753 0.9091 0.9298 0.9567 0.9716 1.0130 1.0132 1.0596
27 1.0000 0.9974 0.9984 0.9375 0.9521 0.9707 0.9809 1.0086 1.0088 1.0390
37 1.0000 1.0092 1.0096 0.9524 0.9636 0.9778 0.9856 1.0064 1.0066 1.0289
57 1.0000 1.0204 1.0206 0.9677 0.9754 0.9851 0.9903 1.0043 1.0044 1.0191

Table 10.10 RWRE values of estimators for images and different values of images and images.

RRE PTRE
images images
images RE 0.8 0.9 MRLASSO 0.15 0.2 0.25 SRE PRSRE RRRE
images
3 1.0000 5.0591 5.1915 3.3333 2.6044 1.9787 1.6565 2.0000 2.3149 3.3333
13 1.0000 1.7676 1.7705 1.5385 1.4451 1.3286 1.2471 1.3333 1.3967 1.5385
23 1.0000 1.4489 1.4506 1.3043 1.2584 1.1974 1.1522 1.2000 1.2336 1.3043
33 1.0000 1.3296 1.3304 1.2121 1.1820 1.1411 1.1100 1.1429 1.1655 1.2121
53 1.0000 1.2279 1.2281 1.1321 1.1144 1.0898 1.0707 1.0909 1.1046 1.1321
images
3 1.0000 4.0373 4.1212 2.8571 2.2117 1.7335 1.4923 1.8733 2.0602 2.8846
13 1.0000 1.6928 1.6954 1.4815 1.3773 1.2683 1.1975 1.3039 1.3464 1.4851
23 1.0000 1.4147 1.4164 1.2766 1.2234 1.1642 1.1235 1.1840 1.2071 1.2784
33 1.0000 1.3078 1.3086 1.1940 1.1587 1.1183 1.0899 1.1319 1.1476 1.1952
53 1.0000 1.2155 1.2156 1.1215 1.1005 1.0759 1.0582 1.0842 1.0938 1.1222
images
3 1.0000 3.3589 3.4169 2.5000 1.9266 1.5541 1.3703 1.7725 1.8843 2.5806
13 1.0000 1.6240 1.6265 1.4286 1.3166 1.2169 1.1562 1.2786 1.3066 1.4414
23 1.0000 1.3822 1.3837 1.2500 1.1909 1.1349 1.0990 1.1700 1.1854 1.2565
33 1.0000 1.2868 1.2876 1.1765 1.1367 1.0979 1.0725 1.1223 1.1329 1.1808
53 1.0000 1.2033 1.2034 1.1111 1.0871 1.0632 1.0472 1.0783 1.0849 1.1137
images
3 1.0000 1.4331 1.4436 1.2500 1.0489 1.0088 0.9978 1.3829 1.3729 1.6901
13 1.0000 1.2259 1.2272 1.1111 1.0239 1.0044 0.9989 1.1607 1.1572 1.2565
23 1.0000 1.1671 1.1682 1.0714 1.0158 1.0029 0.9993 1.1017 1.0996 1.1576
33 1.0000 1.1401 1.1407 1.0526 1.0118 1.0022 0.9994 1.0744 1.0729 1.1137
53 1.0000 1.1139 1.1141 1.0345 1.0078 1.0015 0.9996 1.0484 1.0474 1.0730

Problems

  1. 10.1 Consider model (10.1) and prove that
    equation
  2. 10.2 Prove that
    equation

    where

    equation
  3. 10.3 For the model (10.1), show that the test of the null‐hypothesis images vs. images, is given by
    equation

    where images, images, and

    equation
  4. 10.4 Show that the ADR of images is given by
    equation

    where images is the c.d.f. of chi‐square distribution with images DF and noncentrality parameter images evaluated at images.

  5. 10.5 Prove that the images of images is given by
    equation

    where

    equation
  6. 10.6 Verify that images of images is given by
    equation

    where images is given by (9.70).

  7. 10.7 Prove that the PTRE dominates the RE whenever
    equation

    Otherwise, RE outperforms the PTRE in the given interval.

  8. 10.8 Show that modified RLASSO estimator dominates over PTRE whenever
    equation

    Otherwise, PTRE will dominate the modified RLASSO estimator.

  9. 10.9 Derive the ADB and ADR of the shrinkage R‐estimators in (10.29), (10.30), and (10.36).
  10. 10.10 Derive the ADB and ADR of the shrinkage R‐estimators in (10.37), (10.38), and (10.39).
  11. 10.11 Consider a real data set, where the design matrix elements are moderate to highly correlated, then find the efficiency of the estimators using unweighted risk functions. Find parallel formulas for the efficiency expressions and compare the results with that of the efficiency using the weighted risk function. Are the two results consistent?
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset