BIBLIOGRAPHY

[Abar 93] Abarbanel, H. D. I., M. I. Rabinovich, and M. M. Sushchik (1993). Introduction to Nonlinear Dynamics for Physicists, World Scientific, Singapore.

[A&S 72] Abramowitz, M., and I. A. Stegun (1972). Handbook of Mathematical Functions, 10th Ed., U.S. Government Prnting Office, Washington, DC.

[Add 02] Addison, P. S. (2002). The Illustrated Wavelet Transform Handbook, Institute of Physics Publishing, Bristol and Philadelphia, PA.

[ALCMD] Morris, J., D. Turner, and K.-M. Ho. AL_CMD, Ames Laboratory Classical Molecular Dynamics, cmp.ameslab.gov/cmp/CMP_Theory/cmd/alcmd_source.html.

[A&T 87] Allan, M. P., and J. P. Tildesley (1987). Computer Simulations of Liquids, Oxford Science Publications, Oxford, UK.

[Amd 67] Amdahl, G. (1967). Validity of the single-processor approach to achieving large-scale computing capabilities, Proc. AFIPS., 30, 483.

[Anc 02] Ancona, M. G. (2002). Computational Methods for Applied Science and Engineering, Rinton Press, Princeton, NJ.

[A&W 01] Arfken, G. B., and H. J. Weber (2001). Mathematical Methods for Physicists, Harcourt/Academic Press, San Diego.

[Argy 91] Argyris, J., M. Haase, and J. C. Heinrich (1991). Finite element approximation to two-dimensional Sine–Gordon solitons, Comput. Methods Appl. Mech. Eng. 86, 1.

[Arm 91] Armin, B., and H. Shlomo, Eds. (1991). Fractals and Disordered Systems, Springer-Verlag, Berlin.

[Ask 77] Askar, A., and A. S. Cakmak (1977). Explicit integration method for the time-dependent Schrödinger equation for collision problems, J. Chem. Phys. 68, 2794.

[Bai 05] Bailey, M. OSU ChromaDepth Scientific Visualization Gallery, web.engr.oregonstate.edu/˜mjb/chromadepth/.

[Bana 99] Banacloche, J. G. (1999). A quantum bouncing ball, Am. J. Phys. 67, 776.

[Barns 93] Barnsley, M. F., and L. P. Hurd (1993). Fractal Image Compression, A. K. Peters, Wellesley, MA.

[Becker 54] Becker, R. A. (1954). Introduction to Theoretical Mechanics, McGraw-Hill, New York.

[Berry] Berryman, A. A. Predator-Prey Dynamics, classes.entom.wsu.edu/543/.

[B&R 02] Bevington, P. R., and D. K. Robinson (2002). Data Reduction and Error Analysis for the Physical Sciences, 3rd Ed., McGraw-Hill, New York.

[Bin 01] Binder, K., and D. W. Heermann (2001). Monte Carlo Methods, Springer-Verlag, Berlin.

[Bleh 90] Bleher, S., C. Grebogi, and E. Ott (1990). Bifurcations in chaotic scattering, Phys. D, 46, 87.

[Burg 74] Burgers, J. M. (1974). The Non-Linear Diffusion Equation: Asymptotic Solutions and Statistical Problems, Reidel, Boston.

[DX2] Braun, J. R. Ford, and D. Thompson (2001). OpenDX: Paths to Visualization, Visualization and Imagery Solutions, Missoula, MT.

[B&H 95] Briggs, W. L., and V. E. Henson (1995). The DFT: An Owner’s Manual, SIAM, Philadelphia.

[C&P 85] R. Car, and M. Parrinello (1985). Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55, 2471.

[C&P 88] Carrier, G. F., and C. E. Pearson (1988). Partial Differential Equations, Academic Press, San Diego.

[C&L 81] Christiansen, P. L., and P. S. Lomdahl (1981). Numerical solutions of 2 + 1 dimensional Sine–Gordon solitons Phys. 2D, 482.

[CPUG] CPUG, Computational physics degree program for undergraduates, Oregon State University, www.physics.oregonstate.edu/CPUG.

[C&N 47] CRANK, J., AND P. NICOLSON (1946). A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type, Proc. Cambridge Phil. Soc. 43, 50.

[C&O 78] Christiansen, P. L., and O. H. Olsen (1978). Ring-shaped quasi-soliton solutions to the two- and three-dimensional Sine–Gordon equation, Phys. Lett. 68A, 185; (1979) Phys. Scr. 20, 531.

[Chrom] ChromaDepth Technologies, www.chromatek.com/.

[Clark] Clark University, Statistical and Thermal Physics Curriculum Development Project, stp.clarku.edu/; Density of States of the 2D Ising Model, stp.clarku.edu/simulations/ising/wanglandau.html.

[Co 65] Cooley, J. W., and J. W. Tukey, (1965). An algorithm for the machine calculation of complex Fourier series, Math. Comput. 19, 297.

[Cour 28] Courant, R., K. Friedrichs, and H. Lewy (1928). Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 100, 32.

[Cre 81] Creutz, M., and B. Freedman (1981). A statistical approach to quantum mechanics, Ann. Phys. (N.Y.) 132, 427.

[CYG] Cygwin, a Linux-like environment for Windows, x.cygwin.com/.

[Da 42] Danielson, G. C., and C. Lanczos (1942). Some improvements in practical Fourier analysis and their application to X-ray scattering from liquids, J. Franklin Inst. 233, 365.

[Daub 95] Daubechies, I. (1995). Wavelets and other phase domain localization methods, Proc. Int. Cong. Math. Basel, 1, 2 56, Birkhäuser.

[DeJ 92] De Jong, M. L. (1992). Chaos and the simple pendulum, Phys. Teacher 30, 115.

[DeV 95] DeVries, P. L. (1996). Resource letter CP-1: Computational Physics, Am. J. Phys. 64, 364.

[Dong 05] Dongarra, J., T. Sterling, H. Simon, and E. Strohmaier (2005). High-performance computing, IEEE/AIP Comput. Sci. Eng. 7, 51.

[Donn 05] Donnelly, D., and B. Rust (2005). The fast Fourier transform for experimentalists, IEEE/AIP Comput. Sci. Eng. 7, 71.

[D&J 94] Donoho, D. L., and I. M. Johnstone (1994). Ideal denoising in an orthonormal basis chosen from a library of bases, Compt. Rend. Acad. Sci. Paris Ser. A, 319, 1317.

[DX1] Dx, Open DX, The open source software project based on IBM’s Visualization Data Explorer, www.opendx.org/.

[Jtut] Eck, D., (2002), Introduction to Programming Using Java, Version 4 (a free textbook), math.hws.edu/javanotes/.

[Eclipse] Eclipse, an open development platform, www.eclipse.org/.

[Erco] Ercolessi, F., A Molecular Dynamics Primer, www.ud.infn.it/~ercolessi/md/.

[E&P 88] Eugene, S. H., and M. Paul (1988). Multifractal phenomena in physics and chemistry, Nature 335, 405.

[F&S] Falkovich, G., and K. R. Sreenivasan (2006). Lesson from hydrodynamic turbulence, Phys. Today 59, 43.

[Fam 85] Family, F., and T. Vicsek (1985). Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model, J. Phys. A 18, L75.

[Feig 79] Feigenbaum, M. J. (1979). The universal metric properties of nonlinear transformations, J. Stat. Phys. 21, 669.

[F&W 80] Fetter, A. L., and J. D. Walecka (1980). Theoretical Mechanics of Particles and Continua, McGraw-Hill, New York.

[F&H 65] Feynman, R. P., and A. R. Hibbs (1965). Quantum Mechanics and Path Integrals, McGraw-Hill, New York.

[Fitz 04] Fitzgerald, R. (2004). New experiments set the scale for the onset of turbulence in pipe flow, Phys. Today 57, 21.

[Fos 96] Fosdick L. D, E. R. Jessup, C. J. C. Schauble, and G. Domik (1996). An Introduction to High Performance Scientific Computing, MIT Press, Cambridge, MA.

[Fox 03] Fox, G. (2003). HPJava: A data parallel programming alternative, IEEE/AIP Comput. Sci, Eng. 5, 60.

[Fox 94] Fox, G. (1994). Parallel Computing Works! Morgan Kaufmann, San Diego.

[Gara 05] Gara, A., M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E. Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-Burow, T. Takken, and P. Vranas, Overview of the Blue Gene/L system architecure (2005). IBM J. Res. Dev. 49, 195.

[Gar 00] Garcia, A. L. (2000). Numerical Methods for Physics, 2nd Ed., Prentice Hall, Upper Saddle River, NJ.

[Gibbs 75] Gibbs, R. L. (1975). The quantum bouncer, Am. J. Phys. 43, 25–28.

[Good 92] Goodings, D. A., and T. Szeredi (1992), The quantum bouncer by the path integral method, Am. J. Phys. 59, 924–930.

[Gimp] GIMP, the GNU image manipulation program, www.gimp.org/.

[GNU] Gnuplot, a portable command-line driven interactive data and function plotting utility, www.gnuplot.info/.

[Gold 67] Goldberg, A., H. M. Schey, and J. L. Schwartz (1967). Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena, Am. J. Phys. 35, 177.

[Gos 99] Goswani, J. C., and A. K. Chan (1999). Fundamentals of Wavelets, John Wiley, New York.

[Gott 66] Gottfried, K. (1966), Quantum Mechanics, Benjamin, New York.

[G,T&C 06] Gould, H., J. Tobochnik, and W. Christian (2006). An Introduction to Computer Simulation Methods, 3rd Ed., Addison-Wesley, Reading, MA.

[Grace] Grace; A WYSIWYG 2D plotting tool for the X Window System (descendant of ACE/gr, Xmgr), plasma-gate.weizmann.ac.il/Grace/.

[Graps 95] Graps, A. (1995). An introduction to wavelets, IEEE/AIP Comput. Sci. Eng. 2, 50.

[BCCD] Gray, P., and T. Murphy (2006). Something wonderful this way comes, Comput. Sci. Eng. 8, 82; bccd.cs.uni.edu/.

[Gurney] Gurney, W. S. C., and R. M. Nisbet (1998). Ecological Dynamics, Oxford University Press, Oxford, UK.

[H&T 70] Haftel, M. I., and F. Tabakin (1970). Off-shell effects in nuclear matter, Nucl. Phys. 158, 1.

[Har 96] Hardwich, J. Rules for Optimization, www.cs.cmu.edu/˜jch/java. [Hart 98] Hartmann, W. M. (1998). Signals, Sound, and Sensation, AIP Press, Springer-Verlag, New York.

[Hi,76] Higgins, R. J. (1976). Fast Fourier transform: An introduction with some minicomputer experiments, Am. J. Phys. 44, 766.

[Hock 88] Hockney, R.W., and J. W. Eastwood (1988). Computer Simulation Using Particles, Adam Hilger, Bristol, UK.

[Huang 87] Hunag, K. (1987). Statistical Mechanics, John Wiley, New York.

[Intel] Intel Cluster Tools, www3.intel.com/cd/software/products/asmo-na/eng/cluster/244171.htm; Intel Compilers, www3.intel.com/cd/software/products/asmo-na/eng/compilers/284264.htm.

[irfanview] irfanview, www.irfanview.com/.

[Jack 88] Jackson, J. D. (1988). Classical Electrodynamics, 3rd Ed., John Wiley, New York.

[Jama] JAMA, a Java matrix package; Java Numerics, math.nist.gov/ javanumerics/jama/.

[J&S 98] José, J. V, and E. J. Salatan (1988). Classical Dynamics, Cambridge University Press, Cambridge, UK.

[jEdit] jEdit, a mature programmer’s text editor, www.jedit.org/.

[K&R 88] Kernighan, B., and D. Ritchie (1988). The C Programming Language, 2nd Ed., Prentice Hall, Englewood Cliffs, NJ.

[Koon 86] Koonin, S. E. (1986). Computational Physics, Benjamin, Menlo Park, CA.

[KdeV 95] Korteweg, D. J., and G. deVries (1895). On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. 39, 4.

[Krey 98] Kreyszig, E. (1998). Advanced Engineering Mathematics, 8th Ed., John Wiley, New York.

[Kutz] Kutz N., Scientific Computing, www.amath.washington.edu/courses/581-autumn-2003/.

[Lamb 93] Lamb, H. (1993). Hydrodynamics, 6th Ed., Cambridge University Press, Cambridge, UK.

[L&L,F 87] Landau, L. D., and E. M. Lifshitz (1987). Fluid Mechanics, 2nd Ed., Butterworth-Heinemann, Oxford, UK.

[L&L,M 76] Landau, L. D., and E. M. Lifshitz (1976). Quantum Mechanics, Pergamon, Oxford, UK.

[L&L,M 77] Landau, L. D., and E. M. Lifshitz (1976). Mechanics, 3rd Ed., Butterworth-Heinemann, Oxford, UK.

[L 05] Landau, R. H. (2005), A First Course in Scientific Computing, Princeton University Press, Princeton, NJ.

[L 96] Landau, R. H. (1996). Quantum Mechanics II: A Second Course in Quantum Theory, 2nd Ed., John Wiley, New York.

[L&F 93] Landau, R. H., and P. J. Fink (1993). A Scientist’s and Engineer’s Guide to Workstations and Supercomputers, John Wiley, New York.

[Lang] Lang, W. C., and K. Forinash (1998). Time-frequency analysis with the continuous wavelet transform, Am. J. Phys. 66, 794.

[LAP 00] Anderson, E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen (2000). LAPACK User’s Guide, 3rd Ed., SIAM, Philadelphia, netlib.org. [Li] Li, Z., Numerical Methods for Partial Differential Equations—Finite Element Method, www4.ncsu.edu/˜zhilin/TEACHING/MA587/.

[Libb 03] Liboff, R. L. (2003). Introductory Quantum Mechanics, Addison Wesley, Reading, MA.

[Lot 25] Lotka, A. J. (1925). Elements of Physical Biology, Williams & Wilkins, Baltimore.

[MacK 85] MacKeown, P. K. (1985). Evaluation of Feynman path integrals by Monte Carlo methods, Am. J. Phys. 53, 880.

[Lusk 99] Lusk, W. E., and A. Skjellum (1999). Using MPI: Portable Parallel Programming with the Message-Passing Interface, 2nd Ed., MIT Press, Cambridge, MA.

[M&N 87] MacKeown, P. K., and D. J. Newman (1987). Computational Techniques in Physics, Adam Hilger, Bristol, UK.

[MLP 00] Maestri, J. J. V., R. H. Landau, and M. J. Paez (2000). Two-particle Schrödinger equation animations of wave packet–wave packet scattering, Am. J. Phys. 68, 1113.

[Mallat 89] Mallat, P. G. (1982). A theory for multiresolution signal decomposition: The wavelet representation, IEEE Transa. Pattern Anal. Machine Intelligence, 11, 674.

[Mand 67] Mandelbrot, B. (1967). How long is the coast of Britain? Science, 156, 638.

[Mand 82] Mandelbrot, B. (1982). The Fractal Geometry of Nature, Freeman, San Francisco, p.29.

[Mann 90] Manneville, P. (1990). Dissipative Structures and Weak Turbulence, Academic Press, San Diego.

[Mann 83] Mannheim, P. D. (1983). The physics behind path integrals in quantum mechanics, Am. J. Phys. 51, 328.

[M&T 03] Marion, J. B., and S. T. Thornton (2003). Classical Dynamics of Particles and Systems, 5th Ed., Harcourt Brace Jovanovich, Orlando, FL.

[Math 02] Mathews, J. (2002). Numerical Methods for Mathematics, Science, and Engineering, Prentice Hall, Upper Saddle River, NJ.

[Math 92] Mathews, J. (1992). Numerical Methods for Mathematics, Science, and Engineering, Prentice Hall, Englewood Cliffs, NJ.

[M&W 65] Mathews, J., and R. L. Walker (1965). Mathematical Methods of Physics, Benjamin, Reading, MA.

[MW] Mathworks, Matlab Wavelet Toolbox, www.mathworks.com/.

[Metp 53] Metropolis, M., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953). Equation of state calculations by fast computing machines, J. Chem. Phys. 21, 1087.

[Mold] Refson, K. Moldy, A General-Purpose Molecular Dynamics Simulation Program, www.earth.ox.ac.uk/˜keithr/moldy.html.

[M&L 85] Moon, F. C., and G.-X. Li (1985). Fractal basin boundaries and homoclinic orbits for periodic motion in a two-well potential, Phys. Rev. Lett. 55, 1439.

[M&F 53] Morse, P. M., and H. Feshbach (1953). Methods of Theoretical Physics, McGraw-Hill, New York.

[MPI] Math. and Computer Science Division, Argonne National Laboratory (2006). The Message Passing Interface (MPI) Standard (updated May 9, 2006), www-unix.mcs.anl.gov/mpi/.

[MPI2] Mathematics and Computer Science Division, Argonne National Laboratory (2004). Web Pages for MPI and MPE (updated August 4, 2004), www-unix.mcs.anl.gov/mpi/www.

[MPImis] Academic Computing and Communications Center, University of Illinois at Chicago (2004). Argo Beowulf Cluster: MPI Commands and Examples (updated December 3, 2004), www.uic.edu/depts/accc/hardware/argo/mpi_routines.html.

[NAMD] Nelson, M., W. Humphrey, A. Gursoy, A. Dalke, L. Kale, R. D. Skeel, and K. Schulten (1996). NAMD—Scalable Molecular Dynamics, J. Supercomput. Appl. High Performance Comput., www.ks.uiuc.edu/Research/namd/.

[NSF] Nation Science Foundation Supercomputer Centers: Cornell Theory Center, www.tc.cornell.edu; National Center for Supercomputing Applications, www.ncsa.uiuc.edu; Pittsburgh Supercomputing Center, www.psc.edu; San Diego Supercomputing Center, www.sdsc.edu; National Center for Atmospheric Research, www.ucar.edu.

[Nes 02] Nesvizhevsky, V. V., H. G. Borner, A. K. Petukhov, H. Abele, S. Baessler, F. J. Ruess, T. Stoferle, A. Westphal, A. M. Gagarski, G. A. Petrov, and A. V. Strelkov, (2002). Quantum states of neutrons in the Earth’s gravitational field, Nature 415, 297.

[Netpbm] Netpbm, a package of graphics programs and programming library, netpbm.sourceforge.net/doc/.

[Ott 02] Ott, E. (2002). Chaos in Dynamical Systems, Cambridge University Press, Cambridge, UK.

[Otto] Otto A., Numerical Simulations of Fluids and Plasmas, what.gi.alaska.edu/ ao/sim/chapters/chap6.pdf.

[OR] Oualline, S. (1997). Practical C Programming, O’Reilly and Associates, Sebastopol.

[Pach 97] Pacheco, P. S. (1997). Parallel Programming with MPI, Morgan Kaufmann, San Diego.

[Pan 96] Pancake, C. M. (1996). Is Parallelism for You? IEEE Comput. Sci. Eng. 3, 18.

[PBS] Portable Batch System, www.openpbs.org/.

[P&D 81] Pedersen, N. F., and A. Davidson (1981). Chaos and noise rise in Josephson junctions, Appl. Phys. Lett. 39, 830.

[Peit 94] Peitgen, H.-O., H. Jürgens, and D. Saupe (1992). Chaos and Fractals, Springer-Verlag, New York.

[Penn 94] Penna, T. J. P. (1994). Fitting curves by simulated annealing, Comput. Phys. 9, 341.

[Perlin] Perlin, K., NYU Media Research Laboratory, mrl.nyu.edu/˜perlin.

[P&R 95] Phatak, S. C., and S. S. Rao (1995). Logistic map: A possible random-number generator, Phys. Rev. E 51, 3670.

[PhT 88] Physics Today, Special issue on chaos, December 1988.

[P&W 91] Pinson, L. J., and R. S. Wiener (1991). Objective-C Object-Oriented Programming Techniques, Addison-Wesley, Reading, MA.

[P&B 94] Plischke, M., and B. Bergersen (1994). Equilibrium Statistical Physics, 2nd Ed., World Scientific, Singapore.

[Polikar] Polikar, R., The Wavelet Tutorial, users.rowan.edu/˜polikar/WAVELETS/ WTtutorial.html.

[Potv 93] Potvin, J. (1993). Computational quantum field theory, Comput. Phys. 7, 149.

[Pov-Ray] Persistence of Vision Raytracer, www.povray.org.

[Pres 94] Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1994). Numerical Recipes, Cambridge University Press, Cambridge, UK.

[Pres 00] Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (2000). Numerical Recipes in C++, 2nd Ed., Cambridge University Press, Cambridge, UK.

[PtPlot] PtPlot, a 2-D data plotter and histogram tool implemented in Java, ptolemy.eecs.berkeley.edu/java/ptplot/.

[PVM] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam (1994). PVM: Parallel Virtual Machine—A User’s Guide and Tutorial for Networked Parallel Computing, Oak Ridge National Laboratory, Oak Ridge, TN.

[Quinn 04] Quinn, M. J. (2004). Parallel Programming in C with MPI and OpenMP, McGraw Hill, New York.

[Ram 00] Ramasubramanian, K., and M. S. Sriram (2000). A comparative study of computation of Lyapunov spectra with different algorithms, Physica D 139, 72.

[Rap 95] Rapaport, D.C (1995). The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, UK.

[Rash 90] Rasband, S. N. (1990). Chaotic Dynamics of Nonlinear Systems, John Wiley, New York.

[Raw 96] Rawitscher, G., I. Koltracht, H. Dai, and C. Ribetti (1996). The vibrating string: A fertile topic for teaching scientific computing, Comput. Phys. 10, 335.

[R&M93] Reitz, J. R., F. J. Milford, and Christy, R. W. (1993). Foundations of Electromagnetic Theory, 4th Ed., Addison-Wesley, Reading, MA.

[Rey 83] Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water in parallel channels shall be direct or sinuous and of the law of resistance in parallel channels, Proc. R. Soc. Lond. 35, 84.

[Rhei 74] Rheinbold, W. C. (1974). Methods for Solving Systems of Nonlinear Equations, SIAM, Philadelphia.

[Rich 61] Richardson. L. F. (1961). Problem of contiguity: An appendix of statistics of deadly quarrels, Gen. Systems Yearbook,6, 139.

[Riz] Riznichenko G. Y., Mathematical Models in Biophysics, www.biophysics.org/education/galina.pdf.

[Rowe 95] Rowe, A. C. H., and P. C. Abbott (1995). Daubechies Wavelets and Mathematica, Comput. Phys. 9, 635–548.

[Russ 44] Russell, J. S. (1844), Report of the 14th Meeting of the British Association for the Advancement of Science, John Murray, London.

[Sand 94] Sander, E., L. M. Sander, and R. M. Ziff (1994). Fractals and fractal correlations, Comput. Phys. 8, 420.

[Schk 94] Scheck, F. (1994). Mechanics, from Newton’s Laws to Deterministic Chaos, 2nd Ed., Springer-Verlag, New York.

[Schd 00] Schmid, E. W., G. Spitz, and W. Lösch (2000). Theoretical Physics on the Personal Computer, 2nd Ed., Springer-Verlag, Berlin.

[Shannon 48] Shannon, C. E. (1948). A mathematical theory of communication, Bell System Tech. J. 27, 379.

[Shar] Sharov, A., Quantitative Population Ecology, www.gypsymoth.ento.vt.edu/˜sharov/PopEcol/.

[Shaw 92] Shaw C. T. (1992), Using Computational Fluid Dynamics, Prentice Hall, Englewood Cliffs. NJ.

[S&T 93] Singh, P. P., and W. J. Thompson (1993), Exploring the complex plane: Green’s functions, Hilbert transforms, analytic continuation, Comput. Phys. 7, 388.

[Sipp 96] Sipper., M. (1997). Evolution of Parallel Cellular Machines Springer-Verlag, Heidelberg; www.cs.bgu.ac.il/˜sipper/ca.html; Cellular Automata, cell-auto.com/.

[Smi 91] Smith, D. N. (1991). Concepts of Object-Oriented Programming, McGraw-Hill, New York.

[Smi 99] Smith, S. W. (1999). The Scientist and Engineer’s Guide to Digital Signal Processing, California Technical Publishing, San Diego.

[Sterl 99] Sterling, T., J. Salmon, D. Becker, and D. Savarese (1999), How to Build a Beowulf, MIT Press, Cambridge, MA.

[Stez 73] Stetz, A., J. Carroll, N. Chirapatpimol, M. Dixit, G. Igo, M. Nasser, D. Ortendahl, and V. Perez-Mendez (1973). Determination of the axial vector form factor in the radiative decay of the pion, LBL 1707. Paper presented at the Symposium of the Division of Nuclear Physics, Washington, DC, April 1973.

[Sull 00] Sullivan, D. (2000). Electromagnetic Simulations Using the FDTD Methods, IEEE Press, New York.

[SunJ] Sun Java Developer’s site, java.sun.com/.

[SGE] Sun N1 Grid Engine, www.sun.com/software/gridware/.

[SUSE] The openSUSE Project, en.opensuse.org/Welcome_to_openSUSE.org.

[Tab 89] Tabor, M. (1989). Chaos and Integrability in Nonlinear Dynamics, John Wiley, New York.

[Taf 89] Taflove, A., and S. Hagness. (2000). Computational Electrodynamics: The Finite Difference Time Domain Method, 2nd Ed., Artech House, Boston.

[Tait 90] Tait, R. N., T. Smy, and M. J. Brett (1990). A ballistic deposition model for films evaporated over topography, Thin Solid Films 187, 375.

[Thij 99] Thijssen J. M. (1999). Computational Physics, Cambridge University Press, Cambridge, UK.

[Thom 92] Thompson, W. J. (1992), Computing for Scientists and Engineers, John Wiley, New York.

[Tick 04] Tickner, J. (2004), Simulating nuclear particle transport in stochastic media using Perlin noise functions, Nuclear Instrum. Methods B, 203, 124.

[Torque] TORQUE Resource Manager, www.clusterresources.com/pages/products/torque-resource-manager.php.

[UCES] Undergraduate Computational Engineering and Science, www.krellinst.org/UCES/.

[Vall 00] Vallée, O. (2000). Comment on a quantum bouncing ball by Julio Gea Banacloche, Am. J. Phys. 68, 672.

[VdeV 94] van de Velde, E. F. (1994). Concurrent Scientific Computing, Springer-Verlag, New York.

[VdB 99] van den Berg, J. C., Ed. (1999). Wavelets in Physics, Cambridge University Press, Cambridge. UK.

[Vida 99] Vidakovic, B. (1999). Statistical Modeling by Wavelets, John Wiley, New York.

[Viss 91] Visscher, P. B. (1991). A fast explicit algorithm for the time-dependent Schrödinger equation, Comput. Phys. 5, 596.

[Vold 59] Vold, M. J. (1959), Microscopic and macroscopic compaction of cohesive powders, J. Colloid. Sci. 14, 168.

[Volt 26] Volterra, V. (1926), Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, Mem. R. Accad. Naz. dei Lincei. Ser. VI, 2.

[Ward 04] Ward, D. W, and K.A. Nelson (2004). Finite Difference Time Domain (FDTD) Simulations of Electromagnetic Wave Propagation Using a Spreadsheet, ArXiv Phys. 0402091, 1–8.

[WL 04] Landau, D. P, S.-H. Tsai, and M. Exler (2004). A new approach to Monte Carlo simulations in statistical physics: Wang–Landau sampling, Am. J. Phys. 72, 1294. Landau, D. P, and F. Wang (2001). Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram, Phys. Rev. E 64, 056101.

[WW 04] Warburton, R. D. H., and J. Wang (2004). Analysis of asymptotic projectile motion with air resistance using the Lambert W function, Am. J. Phys. 72, 1404.

[Whine 92] Whineray, J. (1992). An energy representation approach to the quantum bouncer, Am. J. Phys. 60, 948–950.

[Wiki] Wikipedia, the free encyclopedia, en.wikipedia.org/.

[Will 97] Williams, G. P. (1997). Chaos Theory Tamed, Joseph Henry Press, Washington, DC.

[W&S 83] Witten, T. A., and L. M. Sander (1981). Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47, 1400; (1983); Diffusion-limited aggregation in three dimensions, Phys. Rev. B 27, 5686.

[Wolf 85] Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, (1985). Determining Lyapunov exponents from a time series, Physica D, 16, 285.

[Wolf 83] Wolfram S. (1983). Statistical mechanics of cellular automata, Rev. Mod. Phys. 55, 601.

[XWIN32] X-Win32, a focused PC X server, www.starnet.com/products/xwin32/.

[Yang 52] Yang, C. N. (1952). The Spontaneous Magnetization of a Two-Dimensional Ising Model, Phys. Rev. 85, 809.

[Yee 66] Yee, K. (1966). Numerical solution of initial value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propagation AP-14, 302.

[Z&K 65] Zabusky, N. J., and M. D. Kruskal (1965). Interaction of “solitons” in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15, 240.

[Zucker] Zucker, M., The Perlin noise FAQ; www.cs.cmu.edu/˜mzucker/code/perlin-noise-math-faq.html; see also Jönsson, A., Generating Perlin Noise, www.angelcode.com/dev/perlin/perlin.asp.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset