426 Bibliography
[72] Cecil, T.E., Ryan, P.J., Tight and taut immersions of manifolds. Research Notes
in Mathematics, 107, Pitman (Advanced Publishing Program), Boston, MA,
1985.
[73] Cecil, T.E., Ryan. P.J., The principal curvatures of the monkey saddle. Amer.
Math. Monthly 93 (1986), no. 5, 380–382.
[74] Chavel, I., Riemannian geometry - a modern introduction. Cambridge Tracts
in Mathematics, 108, Cambridge University Press, Cambridge, 1993.
[75] Cheeger, J., Ebin, D.G., Comparison theorems in Riemannian geometry.
North-Holland Mathematical Library, Vol. 9. North-Holland Publishing Co.,
Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975.
[76] Chen, B.-Y., Geometry of submanifolds. Pure and Applied Mathematics, No.
22, Marcel Dekker, Inc., New York, 1973.
[77] Chen, B.-Y., Extrinsic spheres in Riemannian manifolds. Houston J. Math. 5
(1979), no. 3, 319–324.
[78] Chen, B.-Y., Totally umbilical submanifolds. Soochow J. Math. 5 (1979), 9–
37.
[79] Chen, B.-Y., Classication of totally umbilical submanifolds in symmetric
spaces. J. Austral. Math. Soc. Ser. A 30 (1980/81), no. 2, 129–136.
[80] Chen, B.-Y., Nagano, T., Totally geodesic submanifolds of symmetric spaces,
I. Duke Math. J. 44 (1977), no. 4, 745–755.
[81] Chen, B.-Y., Nagano, T., Totally geodesic submanifolds of symmetric spaces,
II. Duke Math. J. 45 (1978), no. 2, 405–425.
[82] Chen, B.-Y., Yano, K., Pseudo-umbilical submanifolds of a Riemannian mani-
fold of constant curvature. Differential geometry (in honor of Kentaro Yano),
61–71, Kinokuniya, Tokyo, 1972.
[83] Chern, S.S., do Carmo, M., Kobayashi, S., Minimal submanifolds of a sphere
with second fundamental form of constant length. Functional analysis and
related elds (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968,
59–75, Springer, New York, 1970.
[84] Chi, Q.S., Isoparametric hypersurfaces with four principal curvatures revis-
ited. Nagoya Math. J. 193 (2009), 129–154.
[85] Chi, Q.S., Isoparametric hypersurfaces with four principal curvatures, II.
Nagoya Math. J. 204 (2011), 1–18.
[86] Chi, Q.S., Isoparametric hypersurfaces with four principal curvatures, III. J.
Differential Geom. 44 (2013), 469–504.
Bibliography 427
[87] Conlon, L., Variational completeness and K-transversal domains. J. Differ-
erential Geom. 5 (1971), 135–147.
[88] Conlon, L., A class of variationally complete representations. J. Differential
Geom. 7 (1972), 149–160.
[89] Console, S., Innitesimally homogeneous submanifolds of Euclidean spaces.
Ann. Global Anal. Geom. 12 (1994), no. 3, 313–334.
[90] Console, S., Algebraic characterization of homogeneous submanifolds of
space forms. Boll. Un. Mat. Ital. B (7) 10 (1996), no. 1, 129–148.
[91] Console, S., Di Scala, A.J., Parallel submanifolds of complex projective space
and their normal holonomy. Math. Z. 261 (2009), no. 1, 1–11.
[92] Console, S., Di Scala, A.J., Olmos, C., Holonomy and submanifold geometry.
Enseign. Math. (2) 48 (2002), no. 1-2, 23–50.
[93] Console, S., Di Scala, A.J., Olmos, C., A Berger type normal holonomy theo-
rem for complex submanifolds. Math. Ann. 351 (2011), no. 1, 187–214.
[94] Console, S., Olmos, C., Submanifolds of higher rank. Quart. J. Math. Oxford
Ser. (2) 48 (1997), no. 191, 309–321.
[95] Console, S., Olmos, C., Clifford systems, algebraically constant second funda-
mental form and isoparametric hypersurfaces. Manuscripta Math. 97 (1998),
no. 3, 335–342.
[96] Dadok, J., Polar coordinates induced by actions of compact Lie g roups. Trans.
Amer. Math. Soc. 288 (1985), no. 1, 125–137.
[97] Dajczer, M., Antonucci, M., Oliveira, G., Lima-Filho, P., Tojeiro, R., Subman-
ifolds and isometric immersions. Mathematics Lecture Series, 13, Publish or
Perish, Inc., 1990.
[98] D’Atri, J.E., Certain isoparametric families of hypersurfaces in symmetric
spaces. J. Differential Geom. 14 (1979), no. 1, 21–40.
[99] ıaz-Ramos, J.C., Dom´ınguez-V´azquez, M., Non-Hopf real hypersurfaces
with constant principal curvatures in complex space forms. Indiana Univ.
Math. J. 60 (2011), no. 3, 859–882.
[100] ıaz-Ramos, J.C., Dom´ınguez-V´azquez, M., Isoparametric hypersurfaces in
Damek-Ricci spaces. Adv. Math. 239 (2013), 1–17.
[101] ıaz-Ramos, J.C., Dom´ınguez-V´azquez, M., Kollross, A., Polar actions on
complex hyperbolic spaces. Preprint arXiv:1208.2823 [math.DG].
[102] ıaz-Ramos, J.C., Kollross, A., Polar actions with a xed point. Differential
Geom. Appl. 29 (2011), no. 1, 20–25.
428 Bibliography
[103] Dierkes, U., Hildebrandt, S., K¨uster, A., Wohlrab, O., Minimal surfaces. I.
Boundary value problems. II. Boundary regularity. Grundlehren der Mathe-
matischen Wissenschaften, 295 & 296, Springer-Verlag, Berlin, 1992.
[104] Di Scala, A.J., Reducibility of complex submanifolds of the complex Eucli-
dean space. Math. Z. 235 (2000), no. 2, 251–257.
[105] Di Scala, A.J., Minimal homogeneous submanifolds in Euclidean spaces. Ann.
Global Anal. Geom. 21 (2002), no. 1, 15–18.
[106] Di Scala, A.J., Leistner, T., Connected subgroups of SO(2,n) actin g irre-
ducibly on R
2,n
, Israel J. Math. 182 (2011), 103–121.
[107] Di Scala, A.J., Olmos, C., The geometry of homogeneous submanifolds of
hyperbolic space. Math. Z. 237 (2001), no. 1, 199–209.
[108] Di Scala, A.J., Olmos, C., Submanifolds with curvature normals of constant
length and the Gauss map. J. Reine Angew. Math. 574 (2004), 79–102.
[109] Di Scala, A.J., Olmos, C., The relative nullity of complex submanifolds and
the Gauss map. Proc. Amer. Math. Soc., to appear.
[110] Di Scala, A.J., Vittone, F., Codimension reduction in symmetric spaces. J.
Geom. Phys. 79 (2014), 29–33.
[111] Di Scala, A.J., Vittone, F., Normal holonomy of CR submanifolds. Preprint
arXiv:1311.5778 [math.DG].
[112] Di Scala, A.J., Vittone, F., Mok’s characteristic varieties and the normal hol-
onomy group. Preprint arXiv:1503.01941 [math.DG].
[113] do Carmo, M.P., Riemannian geometry. Mathematics: Theory & Applications,
Birkh¨auser Boston, Inc., Boston, MA, 1992.
[114] do Carmo, M.P., Wallach, N.R., Minimal immersions of spheres into spheres.
Ann. of Math. (2) 93 (1971), 43–62.
[115] Dom´ınguez-V´azquez, M., Canonical extension of submanifolds and foliations
in noncompact symmetric spaces. Internat. Math. Res. Notices 22 (2015),
12114–12125.
[116] Dorfmeister, J., Neher, E., Isoparametric hypersurfaces, case g = 6, m = 1.
Comm. Algebra 13 (1985), no. 11, 2299–2368.
[117] Duistermaat, J.J., Kolk, J.A.C., Lie groups. Universitext, Springer-Verlag,
Berlin, 2000.
[118] Eberlein, P.B., Geometry of nonpositively curved manifolds. Chicago Lectures
in Mathematics, University of Chicago Press, Chicago, IL, 1996.
Bibliography 429
[119] Eells, J., On equivariant harmonic maps. Proceedings of the 1981 Shang-
hai symposium on differential geometry and differential equations (Shang-
hai/Hefei, 1981), 55–73, Science Press, Beijing, 1984
[120] Ejiri, N., Minimal immersions of Riemannian products into real space forms.
Tokyo J. Math. 2 (1979), no. 1, 63–70.
[121] Erbacher, J., Reduction of the codimension of an isometric immersion. J. Dif-
ferential Geom. 5 (1971), 333–340.
[122] Eschenburg, J.-H., Parallelity and extrinsic homogeneity. Math. Z. 229 (1998),
no. 2, 339–347.
[123] Eschenburg, J.-H., Adapted submanifolds of symmetric spaces. Unpublished.
[124] Eschenburg, J.-H., Heintze, E., Extrinsic symmetric spaces and orbits of
s-representations. Manuscripta Math. 88 (1995), no. 4, 517–524. Errata:
Manuscripta Math. 92 (1997), no. 3, 408.
[125] Eschenburg, J.-H., Heintze, E., Polar representations and symmetric spaces. J.
Reine Angew. Math. 507 (1999), 93–106.
[126] Eschenburg, J.-H., Olmos, C., Rank and symmetry of Riemannian manifolds.
Comment. Math. Helv. 69 (1994), no. 3, 483–499.
[127] Ferus, D., Immersionen mit paralleler zweiter Fundamentalform: Beispiele
und Nicht-Beispiele. Manuscripta Math. 12 (1974), 153–162.
[128] Ferus, D., Produkt-Zerlegung von Immersionen mit paraller zweiter Funda-
mentalform. Math. Ann. 211 (1974), 1–5.
[129] Ferus, D., Immersions with parallel second fundamental form. Math. Z. 140
(1974), 87–93.
[130] Ferus, D., Symmetric submanifolds of Euclidean space. Math. Ann. 247
(1980), no. 1, 81–93.
[131] Ferus, D., Karcher, H., M¨unzner, H.F., Cliffordalgebren und neue
isoparametrische Hyper¨achen. Math. Z. 177 (1981), no. 4, 479–502.
[132] Fulton, W., Harris, J., Representation theory. A rst course. Graduate Texts in
Mathematics, 129, Springer-Verlag, New York, 1991.
[133] Gallot, S., Hulin, D., Lafontaine, J., Riemannian geometry. 3rd ed.Universi-
text, Springer-Verlag, Berlin, 2004.
[134] Gamkrelidze, R.V. (Ed.), Geometry. I. Basic ideas and concepts of differen-
tial geometry. Encyclopaedia of Mathematical Sciences, 28, Springer-Verlag,
Berlin, 1991.
430 Bibliography
[135] Ge, J., Tang, Z., Isoparametric functions and exotic spheres. J. Reine Angew .
Math. 683 (2013), 161–180.
[136] Ge, J., Tang, Z., Geometry of isoparametric hypersurfaces in Riemannian
manifolds. Asian J. Math. 18 (2014), no. 1, 117–125.
[137] Gorodski, C., Polar actions on compact symmetric spaces which admit a to-
tally geodesic principal orbit. Geom. Dedicata 103 (2004), 193–204.
[138] Gorodski, C., Kollross, A., Some remarks on polar actions. Ann. Global Anal.
Geom., to appear.
[139] Gorodski, C., Lytchak, A., On orbit spaces of representations of compact Lie
groups. J. Reine Angew. Math. 691 (2014), 61–100.
[140] Gorodski, C., Lytchak, A., Representations whose minimal reduction has a
toric identity component. Proc. Amer. Math. Soc. 143 (2015), no. 1. 379–386.
[141] Gorodski C., Olmos C., Tojeiro R., Copolarity of isometric actions. Trans.
Amer. Math. Soc. 356 (2004), no. 4, 1585–1608.
[142] Gromoll, D., Grove, K., One-dimensional metric foliations in constant curva-
ture spaces. Differential geometry and complex analysis, 165–168, Springer,
Berlin, 1985.
[143] Harle, C.E., Isoparametric families o f submanifolds. Bol. S oc. Brasil. Mat. 13
(1982), no. 2, 35–48.
[144] Heintze, E., Liu, X., Homogeneity of innite-dimensional isoparametric sub-
manifolds. Ann. of Math. (2) 149 (1999), no. 1, 149–181.
[145] Heintze, E., Liu, X., Olmos, C., Isoparametric submanifolds and a Chevalley-
type restriction theorem. Integrable systems, geometry, and topology, 151–
190, AMS/IP Stud. Adv. Math., 36, Amer. Math. Soc., Providence, RI, 2006.
[146] Heintze, E., Olmos, C., Normal holonomy groups and s-representations. Indi-
ana Univ. Math. J. 41 (1992), no. 3, 869–874.
[147] Heintze, E., Olmos, C., Thorbergsson, G., Submanifolds with constant princi-
pal curvatures and normal holonomy groups. Internat. J. Math. 2 (1991), no.
2, 167–175.
[148] Heintze, E., Palais, R.S., Terng, C-.L., Thorbergsson, G., Hyperpolar actions
on symmetric spaces. Geometry, topology, & physics, 214–245, Conf. Proc.
Lecture Notes Geom. Topology, IV, International Press, Cambridge, MA,
1995.
[149] Heintze, E., Palais, R., Terng, C.-L., Thorbergsson, G., Hyperpolar actions and
k-at homogeneous spaces. J. Reine Angew. Math. 454 (1994), 163–179.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset