436 Bibliography
[230] Nagano, T., Tanaka, M.S., The involutions of compact symmetric spaces. IV.
Tokyo J. Math. 22 (1999), no. 1, 193–211.
[231] Nagano, T., Tanaka, M.S., The invo lutions of compact symmetric spaces. V.
Tokyo J. Math. 23 (2000), no. 2, 403–416.
[232] Nagy, P.-A., Skew-symmetric prolongations of Lie algebras and applications.
J. Lie Theory 23 (2013), no. 1, 1–33.
[233] Naitoh, H., Totally real parallel submanifolds in P
n
(c). Tokyo J. Math. 4
(1981), no. 2, 279–306.
[234] Naitoh, H., Parallel submanifolds of complex space forms. I. Nagoya Math. J.
90 (1983), 85–117.
[235] Naitoh, H., Parallel submanifolds of complex space forms. II. Nagoya Math.
J. 91 (1983), 119–149.
[236] Naitoh, H., Symmetric submanifolds of compact symmetric spaces. Tsukuba
J. Math. 10 (1986), no. 2, 215–242.
[237] Naitoh, H., Compact simple Lie algebras with two involutions and submani-
folds of compact symmetric spaces. I. Osaka J. Math. 30 (1993), no. 4, 653–
690.
[238] Naitoh, H., Compact simple Lie algebras with two involutions and submani-
folds of compact symmetric spaces. II. Osaka J. Math. 30 (1993), no. 4, 691–
732.
[239] Naitoh, H., Grassmann geometries on compact symmetric spaces of general
type. J. Math. Soc. Japan 50 (1998), no. 3, 557–592.
[240] Naitoh, H., Grassmann geometries on compact symmetric spaces of excep-
tional type. Japan. J. Math. (N.S.) 26 (2000), no. 1, 157–206.
[241] Naitoh, H., Grassmann geometries on compact symmetric spaces of classical
type. Japan. J. Math. (N.S.) 26 (2000), no. 2, 219–319.
[242] Naitoh, H., Takeuchi, M., Totally real submanifolds and symmetric bounded
domains. Osaka J. Math. 19 (1982), no. 4, 717–731.
[243] Naitoh, H., Takeuchi, M., Symmetric submanifolds of symmetric spaces
(Japanese). Translated in Sugaku Expositions 2 (1989), no. 2, 157–188.
S
¯
ugaku 36 (1984), no. 2, 137–156.
[244] Nakagawa, H., Takagi, R., On locally symmetric Kaehler submanifolds in a
complex projective space. J. Math. Soc. Japan 28 (1976), no. 4, 638–667.
[245] Nash, J., The imbedding problem for Riemannian manifolds. Ann. of Math.
(2) 63 (1956), 20–63.
Bibliography 437
[246] Nikolaevskii, Y.A., Totally umbilical submanifolds of symmetric spaces. Mat.
Fiz. Anal. Geom. 1 (1994), no. 2, 314–357.
[247] Nikolayevsky, Y., Osserman manifolds of dimension 8. Manuscripta Math.
115 (2004), no. 1, 31–53.
[248] Nikolayevsky, Y., Osserman conjecture in dimension n = 8,16. Math. Ann.
331 (2005), no. 3, 505–522.
[249] Nikolayevsky, Y., Conformally Osserman manifolds of dimension 16 and a
Weyl-Schouten theorem for rank-one symmetric spaces. Ann. Mat. Pura Appl.
(4) 191 (2012), no. 4, 677–709.
[250] N¨olker, S., Isometric immersions with homothetical Gauss map. Geom. Dedi-
cata 34 (1990), no. 3, 271–280.
[251] Nomizu, K., Some results in E. Cartans theory of isoparametric families of
hypersurfaces. Bull. Amer. Math. Soc. 79 (1973), 1184–1188.
[252] Nomizu, K.,
´
Elie Cartan’s work on isoparametric families o f hypersurfaces.
Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 1, Stanford
Univ., Stanford, Calif., 1973) 191–200, Amer. Math. Soc., Providence, RI,
1975.
[253] Nomizu, K., Yano, K., On circles and spheres in Riemannian geometry. Math.
Ann. 210 (1974), 163–170.
[254] Ohnita, Y., The rst standard minimal immersions of compact irreducible
symmetric spaces. Differential geometry of submanifolds (Kyoto, 1984), 37–
49, Lecture Notes in Mathematics, 1090, Springer, Berlin, 1984.
[255] Olmos, C., The normal holonomy group. Proc. Amer. Math. Soc. 110 (1990),
no. 3, 813–818.
[256] Olmos, C., Isoparametric submanifolds and their homogeneous structures. J.
Differential Geom. 38 (1993), no. 2, 225–234.
[257] Olmos, C., Homogeneous submanifolds of higher rank and parallel mean cur-
vature. J. Differential Geom. 39 (1994), no. 3, 605–627.
[258] Olmos, C., Orbits of rank one and parallel m ean curvature. Trans. Amer. Math.
Soc. 347 (1995), no. 8, 2927–2939.
[259] Olmos, C., A geometric proof of the Berger holonomy theorem. Ann. of Math.
(2) 161 (2005), no. 1, 579–588.
[260] Olmos, C., On the geometry of holonomy systems. Enseign. Math. (2) 51
(2005), no. 3-4, 335–349.
[261] Olmos, C., Reggiani, S., The skew-torsion holonomy theorem and naturally
reductive spaces. J. Reine Angew. Math. 664 (2012), 29–53.
438 Bibliography
[262] Olmos, C., Reggiani, S., A note on the uniqueness of the canonical connection
of a natural reductive space. Monatsh. Math. 172 (2013), no. 3-4, 379–386.
[263] Olmos, C., Ria˜no-Ria˜no, R., Normal holonomy of orbits and Veronese sub-
manifolds. J. Math. Soc. Japan 67 (2015), no. 3, 903–942.
[264] Olmos, C., Salvai, M., Holonomy of homogeneous vector bundles and polar
representations. Indiana Univ. Math. J. 44 (1995), no. 3, 1007–1015.
[265] Olmos, C., S´anchez, C., A geometric characterization of the orbits of s-
representations. J. Reine Angew. Math. 420 (1991), 195–202.
[266] Olmos, C., Will, A., Normal holonomy in Lorentzian space and submanifold
geometry. Indiana Univ. Math. J. 50 (2001), no. 4, 1777–1788.
[267] O’Neill, B., The fundamental equations of a submersion. Michigan Math. J.
13 (1966), 459–469.
[268] O’Neill, B., Semi-Riemannian geometry. With applications to relativity.Pure
and Applied Mathematics, 103, Academic Press, Inc. [Harcourt Brace Jo-
vanovich, Publishers], New York, 1983.
[269] Oniˇsˇchik, A.L., Totally geodesic submanifolds of symmetric spaces (Russian).
Geometric methods in problems of algebra and analysis 2 (1980), 64–85, 161,
Yaroslavl State University, Yaroslavl, 1980.
[270] Onishchik, A.L. (Ed.), Lie groups and Lie algebras. I. Foundations of Lie the-
ory. Lie transformation groups. Encyclopaedia of Mathematical Sciences, 20,
Springer-Verlag, Berlin, 1993.
[271] Onishchik, A.L., Vinberg,
`
E.B. (Eds.), Lie groups and Lie algebras III. Struc-
ture of Lie groups and Lie algebras. Encyclopaedia of Mathematical Sciences,
41, Springer-Verlag, Berlin, 1994.
[272] Ozeki, H., Takeuchi, M., On some types of isoparametric hypersurfaces in
spheres. I. Tohoku Math. J. (2) 27 (1975), no. 4, 515–559.
[273] Ozeki, H., Takeuchi, M., On some types of isoparametric hypersurfaces in
spheres. II. Tohoku Math. J. (2) 28 (1976), no. 1, 7–55.
[274] Palais, R.S., Terng, C.-L., A general theory of canonical forms. Trans. Amer.
Math. Soc. 300 (1987), no. 2, 771-789.
[275] Palais, R.S., Terng, C.-L., Critical point theory and submanifold geometry.
Lecture Notes in Mathematics, 1353, Springer-Verlag, Berlin, 1988.
[276] Petersen, P., Riemannian geometry. 2nd ed. Graduate Texts in Mathematics,
171, Springer, New York, 2006.
[277] Podest`a, F., Thorbergsson, G., Polar actions on rank-one symmetric spaces. J.
Differential Geom. 53 (1999), no. 1, 131–175.
Bibliography 439
[278] Podest`a, F., Thorbergsson, G., Polar and coisotropic actions on K¨ahler mani-
folds. Trans. Amer. Math. Soc. 354 (2002), no. 5, 1759–1781.
[279] Poor, W.A., Differential geometric structures. McGraw-Hill Book Co., New
York, 1981.
[280] Qian, C., Tang, Z., Isoparametric functions on exotic spheres. Adv. Math. 272
(2015), 611–629.
[281] Reckziegel, H., Kr¨ummungs¨achen von isometrischen Immersionen in
aume konstanter Kr¨ummung. Math. Ann. 223 (1976), no. 2, 169–181.
[282] Reckziegel, H., On the eigenvalues of the shape operator of an isometric im-
mersion into a space of constant curvature. Math. Ann. 243 (1979), no. 1,
71–82.
[283] Reckziegel, H., On the problem whether the image of a given differentiable
map into a Riemannian manifold is contained in a submanifold with parallel
second fundamental form. J. Reine Angew. Math. 325 (1981), 87–104.
[284] Reggiani, S., On the afne group of a normal homogeneous manifold. Ann.
Global Anal. Geom. 37 (2010), no. 4, 351–359.
[285] Reggiani, S., A Berger-type theorem for metric connections with skew-
symmetric torsion. J. Geom. Phys. 65 (2013), 26–34.
[286] Reinhart, B.L., Foliated manifolds with bundle-like metrics. Ann. of Math. (2)
69 (1959), 119–132.
[287] Sagle, A.A., A note on triple systems and totally geodesic submanifolds in a
homogeneous space. Nagoya Math. J. 32 (1968), 5–20.
[288] Sakai, T., Riemannian geometry. Translation of Mathematical Monographs,
149, American Mathematical Society, Providence, RI, 1996.
[289] Salamon, S., Riemannian geometry and holonomy groups. Pitman Research
Notes in Mathematics Series, 201, Longman Scientic & Technical, Harlow,
co-published in the United States with John-Wiley & Sons, Inc., New York,
1989.
[290] S´anchez, C.U., k-symmetric submanifolds of R
N
. Math. Ann. 270 (1985), no.
2, 297–316.
[291] S´anchez, C.U., A characterization of extrinsic k-symmetric submanifolds of
R
N
. Rev.Un.Mat.Argentina38 (1992), no. 1-2, 1-15 (1993).
[292] Segre, B., Famiglie di ipersupercie isoparametriche negli spazi euclidei ad un
qualunque numero di dimensioni. Atti Accad. Naz. Lincei Rend. (6) 27 (1938),
203-207.
440 Bibliography
[293] Serre, J.-P., Repr´esentations lin´eaires et espaces homog`enes k¨ahl´eriens des
groupes de Lie compacts (d’apr`es Armand Borel et Andr´e Weil). S
´
eminaire
Bourbaki, Vol. 2, Exp. No. 100, 447–454, Soc. Math. France, Paris, 1995.
[294] Siffert, A., Classication of isoparametric hypersurfaces in spheres with
(g,m)=(6, 1). Preprint arXiv:1503.04482 [math.DG].
[295] Simons, J., On the transitivity of holonomy systems. Ann. of Math. (2) 76
(1962), 213–234.
[296] Singer, I.M., Innitesimally homogeneous spaces. Comm. Pure Appl. Math.
13 (1960), 685–697.
[297] Singley, D.H., Smoothness theorems for the principal curvatures and principal
vectors o f a hypersurface. Rocky Mountain J. Math. 5 (1975), 135–144.
[298] Somigliana, C., Sulle relazione fra il principio di Huygens e l’ottica geomet-
rica, Atti Accad. Sc. Torino LIV (1918-19), 974–979.
[299] Spivak, M., A comprehensive introduction to d ifferential geometry. Volumes
I-V. S econd edition. Publish or Perish, Inc., Wilmington, DE, 1979.
[300] Stolz, S., Multiplicities of Dupin hypersurfaces. Invent. Math. 138 (1999), no.
2, 253–279.
[301] Str¨ubing, W., Symmetric submanifolds of Riemannian manifolds. Math. Ann.
245 (1979), no. 1, 37–44.
[302] Str¨ubing, W., Isoparametric submanifolds. Geom. Dedicata 20 (1986), no. 3,
367–387.
[303] Szenthe, J., A generalization of the Weyl group. Acta Math. Hungar. 41
(1983), no. 3-4, 347–357.
[304] Szenthe, J., Orthogonally transversal submanifolds and the generalizations of
the Weyl group. Period. Math. Hungar. 15 (1984), 281–299.
[305] Szenthe, J., Isometric actions having orthogonally transversal submanifolds,
Topics in differential geometry, Vol. I, II (Debrecen, 1984), 1155–1164, Col-
loq. Math. Soc. J´anos Bolyai, 46, North-Holland, Amsterdam, 1988.
[306] Takagi, R., On homogeneous real hypersurfaces in a complex projective space.
Osaka J. Math. 10 (1973), 495–506.
[307] Takagi, R., Real hypersurfaces in a complex projective space with constant
principal curvatures. J. Math. Soc. Japan 27 (1975), 43–53.
[308] Takagi, R., Real hypersurfaces in a complex projective space with constant
principal curvatures. II. J. Math. Soc. Japan 27 (1975), no. 4, 507–516.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset