Bibliography 431
[150] Helgason, S., Totally geodesic spheres in compact symmetric spaces. Math.
Ann. 165 (1966), 309–317.
[151] Helgason, S., Differential geometry, Lie groups, and symmetric spaces. Gradu-
ate Studies in Mathematics, 34, American Mathematical Society, Providence,
RI, 2001.
[152] Hermann, R., Existence in the large of totally geodesic submanifolds of Rie-
mannian spaces. Bull. Amer. Math. Soc. 66 (1960), 59–61.
[153] Hermann, R., Variational completeness for compact symmetric spaces. Proc.
Amer. Math. Soc. 11 (1960), 544–546.
[154] Hsiang, W.-Y., Lawson Jr., H.B., Minimal submanifolds of low cohomogene-
ity. J. Differential Geom. 5 (1971), 1–38.
[155] Hsiang, W.-Y., Palais, R.S., Terng, C.-L., The topology of isoparametric sub-
manifolds. J. Differential Geom. 27 (1988), no. 3, 423–460.
[156] Humphreys, J.E., Reection groups and Coxeter groups. Cambridge Studies in
Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990.
[157] Immervoll, S., On the classication of isoparametric hypersurfaces with four
distinct principal curvatures in spheres. Ann. of Math. (2) 168 (2008), no. 3,
1011–1024.
[158] Ise, M., Takeuchi, M., Lie groups. I, II. Translations of Mathematical Mono-
graphs, 85, American Mathematical Society, Providence, RI, 1991.
[159] Iwahori, N., Some remarks on tensor invariants of O(n), U (n), Sp(n). J. Math.
Soc. Japan 10 (1958), 145–160.
[160] Iwahori, N., On discrete reection groups on symmetric Riemannian mani-
folds. 1966 Proc. US-Japan Seminar in Differential Geometry (Kyoto 1965),
57–62, Nippon Hyoronsha, Tokyo.
[161] Iwata, K., Classication of compact transformation groups on cohomology
quaternion projective spaces with codimension one orbits. Osaka J. Math. 15
(1978), no. 3, 475–508.
[162] Iwata, K., Compact transformation groups on rational cohomology Cayley
projective planes. T
ˆ
ohoku Math. J. (2) 33 (1981), no. 4, 429–442.
[163] Jost, J., Riemannian geometry and geometric analysis. 6th ed. Universitext,
Springer, Heidelberg, 2011.
[164] Kaneyuki, S., Asano, H., Graded Lie algebras and generalized Jordan triple
systems. Nagoya Math. J. 112 (1988), 81–115.
432 Bibliography
[165] Karcher, H., A geometric classication of positively curved symmetric spaces
and the isoparametric construction of the Cayley plane. On the geometry of dif-
ferentiable manifolds (Rome, 1986),Ast´erisque No. 163-164 (1988), 6, 111–
135, 282 (1989).
[166] Kato, T., Perturbation theory for linear operators. Reprint of the 1980 edition.
Classics in Mathematics, Springer-Verlag, Berlin, 1995.
[167] Kawakubo, K., The theory of transformation groups. The Clarendon Press,
Oxford University Press, New York, 1991.
[168] Kelly, E.F., Tight equivariant imbeddings of symmetric spaces. J. Differential
Geom. 7 (1972), 535–548.
[169] Kimura, M., Real hypersurfaces and complex submanifolds in complex pro-
jective space. Trans. Amer. Math. Soc. 296 (1986), no. 1, 137–149.
[170] Klein, S., Totally geodesic submanifolds of the complex quadric. Differential
Geom. Appl. 26 (2008), no. 1, 79–96.
[171] Klein, S., Reconstructing the geometric structure of a Riemannian symmetric
space f rom its Satake diagram. Geom. Dedicata 138 (2009), 25–50.
[172] Klein, S., Totally geodesic submanifolds of the complex and the quaternionic
2-Grassmannians. Trans. Amer. Math. Soc. 361 (2009), no. 9, 4927–4967.
[173] Klein, S., Totally geodesic submanifolds of the exceptional Riemannian sym-
metric spaces of rank 2. Osaka J. Math. 47 (2010), no. 4, 1077–1157.
[174] Knapp, A.W., Lie groups beyond an introduction. 2nd ed. Progress in Mathe-
matics, 140, Birkh¨auser Boston, Inc., Boston, MA, 2002.
[175] Knarr, N., Kramer, L., Projective planes and isoparametric hypersurfaces.
Geom. Dedicata 58 (1995), no. 2, 193–202.
[176] Kobayashi, S., Isometric imbeddings of compact symmetric spaces. Tohoku
Math.J.(2)20 (1968), 21–25.
[177] Kobayashi, S., Nagano, T., On ltered Lie algebras and g eometric structures.
I. J. Math. Mech. 13 (1964), 875–907.
[178] Kobayashi, S., Nomizu, K., Foundations of differential geometry, Vol. I & II.
Reprint of the 1969 original. Wiley Classics Library, A Wiley-Interscience
Publication, John Wiley & Sons, Inc., New York, 1996.
[179] Kobayashi, S., Takeuchi, M., Minimal imbeddings of R-spaces. J. Differential
Geom. 2 (1968), 203–215.
[180] Kollross, A., A classication o f hyperpolar and cohomogeneity one actions.
Trans. Amer. Math. Soc. 354 (2002), no. 2, 571–612.
Bibliography 433
[181] Kollross, A., Polar actions on symmetric spaces. J. Differential Geom. 77
(2007), no. 3, 425–482.
[182] Kollross, A., Low cohomogeneity and polar actions on exceptional compact
Lie groups. Transform. Groups 14 (2009), no. 2, 387–415.
[183] Kollross, A., Duality of symmetric spaces and polar actions. J. Lie Theory 21
(2011), no. 4, 961–986.
[184] Kollross, A., Hyperpolar actions on reducible symmetric spaces. Transform.
Groups, to appear.
[185] Kollross, A., Lytchak, A., Polar actions on symmetric spaces of higher rank.
Bull. London Math. Soc. 45 (2013), no. 2, 341–350.
[186] Kollross, A., Podest`a, F., Homogeneous spaces with polar isotropy.
Manuscripta Math. 110 (2003), 487–503.
[187] Kon, M., On some complex submanifolds in Kaehler manifolds. Canad. J.
Math. 26 (1974), 1442–1449.
[188] Kostant, B., Holonomy and the Lie algebra of innitesimal motions of a Rie-
mannian manifold. Trans. Amer. Math. Soc. 80 (1955), 528-542.
[189] Kowalski, O., Generalized symmetric spaces. Lecture Notes in Mathematics,
805, Springer-Verlag, Berlin-New York, 1980.
[190] Kowalski, O., Counterexample to the “second Singer’s theorem”. Ann. Global
Anal. Geom. 8 (1990), no. 2, 211–214.
[191] Kowalski, O., Kulich, I., Generalized symmetric submanifolds of Euclidean
spaces. Math. Ann. 277 (1987), no. 1, 67–78.
[192] Kuroki, S., Classication o f compact transformation groups on complex
quadrics with codimension one orbits. Osaka J. Math. 46 (2009), no. 1, 21–85.
[193] Leschke, K., Homogeneity and canonical connections of isoparametric mani-
folds. Ann. Global Anal. Geom. 15 (1997), no. 1, 51–69.
[194] Leung, D.S.P., The reection principle for minimal submanifolds of Riemann-
ian symmetric spaces. J. Differential Geom. 8 (1973), 153–160.
[195] Leung, D.S.P., On the classication of re ective submanifolds of Riemann-
ian symmetric spaces. Indiana Univ. Math. J. 24 (1974/75), 327–339. Errata:
Indiana Univ. Math. J. 24 (1975), no. 12, 1199.
[196] Leung, D.S.P., Reective submanifolds. III. Congruency of isometric reec-
tive submanifolds and corrigenda to the classication of reective submani-
folds. J. Differential Geom. 14 (1979), no. 2, 167–177.
434 Bibliography
[197] Leung, D.S.P., Reective submanifolds. IV. Classication of real forms o f
Hermitian symmetric spaces. J. Differential Geom. 14 (1979), no. 2, 179–185.
[198] Levi-Civita, T., Famiglie di supercie isoparametriche nell’ordinario spazio
euclideo. Atti Accad. Naz. Lincei Rend. (6) 26 (1937), 355–362.
[199] Lohnherr, M., On ruled real hypersurfaces of complex space forms.PhDthe-
sis, Universit¨at zu K¨oln, 1998.
[200] Lohnherr, M., Reckziegel, H., On ruled real hypersurfaces in complex space
forms. Geom. Dedicata 74 (1999), no. 3, 267–286.
[201] Loos, O., Symmetric Spaces. I: General theory. II: Compact spaces and clas-
sication. W. A. Benjamin, Inc., New York-Amsterdam, 1969.
[202] Lytchak, A., Polar foliations of symmetric spaces. Geom. Funct. Anal. 24
(2014), no. 4, 1298–1315.
[203] Maeda, S., Ohnita, Y., Helical geodesic immersions into complex space forms.
Geom. Dedicata 30 (1989), no. 1, 93–114.
[204] Mart´ınez, A., P´erez, J.D., Real hypersurfaces in quaternionic projective space.
Ann. Mat. Pura Appl. (4) 145 (1986), 355–384.
[205] Mashimo, K., Degree of the standard isometric minimal immersions of com-
plex projective spaces into spheres. Tsukuba J. Math. 4 (1980), no. 1, 133–145.
[206] Mashimo, K., Degree of the standard isometric minimal immersions of the
symmetric spaces of rank one into spheres. Tsukuba J. Math. 5 (1981), no. 2,
291–297.
[207] Mashimo, K., Tojo, K., Circles in Riemannian symmetric spaces. Kodai Math.
J. 22 (1999), no. 1, 1–14.
[208] Mercuri, F., Parallel and semi-parallel immersions into space forms. Confer-
ence on Differential Geometry and Topology (Parma, 1991),Riv.Mat.Univ.
Parma (4) 17* (1991), 91–108 (1993).
[209] Miyaoka, R., The linear isotropy group of G
2
/SO(4), the Hopf bering and
isoparametric hypersurfaces. Osaka J. Math. 30 (1993), no. 2, 179–202.
[210] Miyaoka, R., Isoparametric geometry and related elds. Surveys on geome-
try and integrable systems, 315–337, Adv. Stud. Pure Math., 51, Math. Soc.
Japan, Tokyo, 2008.
[211] Miyaoka, R., The Dorfmeister-Neher theorem on isoparametric hypersurfaces.
Osaka J. Math. 46 (2009), 695–715. Remarks: Osaka J. Math. 52 (2015), 373–
376.
[212] Miyaoka, R., Geometry of G
2
orbits and isoparametric hypersurfaces. Nagoya
Math. J. 203 (2011), 175–189.
Bibliography 435
[213] Miyaoka, R., Isoparametric hypersurfaces with (g,m)=(6,2). Ann. of Math.
177 (2013), no. 1, 53–110. Errata: Ann. of Math, to appear.
[214] Miyaoka, R., Transnormal functions on a Riemannian manifold. Differential
Geom. Appl. 31 (2013), no. 1, 130–139.
[215] Montgomery, D., Samelson, H., Yang, C.T., Exceptional orbits of highest dim-
ension. Ann. of Math. (2) 64 (1956), 131–141.
[216] Montgomery, D., Yang, C.T., The existence of a slice. Ann. of Math. (2) 65
(1957), 108–116.
[217] Montiel, S., Real hypersurfaces of a complex hyperbolic space. J. Math. Soc.
Japan 37 (1985), no. 3, 515–535.
[218] Moore, J.D., Isometric immersions of riemannian products. J. Differential
Geom. 5 (1971), 159–168.
[219] Moore, J.D., Equivariant embeddings of Riemannian homogeneous spaces.
Indiana Univ. Math. J. 25 (1976), no. 3, 271–279.
[220] Mostert, P.S., On a compact Lie group acting on a manifold. Ann. of Math. (2)
65 (1957), 447–455. Errata: Ann. of Math. (2) 66 (1957), 589.
[221] Mostow, G.D., On maximal subgroups of real Lie groups. Ann. of Math. (2)
74 (1961), 503–517.
[222] M¨unzner, H.F., Isoparametrische Hyper¨achen in Sph¨aren. Math. Ann. 251
(1980), no. 1, 57–71.
[223] M¨unzner, H.F., Isoparametrische Hyper¨achen in Sph¨aren. II. Math. Ann. 256
(1981), no. 2, 215–232.
[224] Murphy, T., Curvature-adapted submanifolds of symmetric spaces. Indiana
Univ. Math. J. 61 (2012), no. 2, 831–847.
[225] Nagano, T., Transformation groups on compact symmetric spaces. Trans.
Amer. Math. Soc. 118 (1965), 428–453.
[226] Nagano, T., The involutions of compact symmetric spaces. Tokyo J. Math. 11
(1988), no. 1, 57–79.
[227] Nagano, T., The involutions of compact symmetric spaces. II. Tokyo J. Math.
15 (1992), no. 1, 39–82.
[228] Nagano, T., Sumi, M., The spheres in symmetric spaces. Hokkaido Math. J.
20 (1991), no. 2, 331–352.
[229] Nagano, T., Tanaka, M.S., The involutions of compact symmetric spaces. III.
Tokyo J. Math. 18 (1995), no. 1, 193–212.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset