Appendix B
Specific Solutions

B.1 Second Moments of Area

The bending wave behavior of beams is determined by the cross-section of the beam. We saw in Equations (3.94)–(3.95) that those quantities are a result of an area integration for the infinitesimally small area times the lever related to the neutral axis. There are some definitions and rules that are mandatory to deal with beam dynamics. Figure B.1 shows a typical cross section from building construction. The I or double T-beam. The second moments of area for the axis through the centroid and thus neutral axes are

Figure B.1 Cross section of I-beam with axes x,z coinciding with the centroid. Source: Alexander Peiffer.

upper I prime Subscript y y Baseline equals integral Underscript upper A Endscripts z Superscript prime 2 Baseline d y prime d z Superscript prime Baseline (B.1)
upper I prime Subscript z z Baseline equals integral Underscript upper A Endscripts y Superscript prime 2 Baseline d y prime d z Superscript prime Baseline (B.2)
upper I prime Subscript y z Baseline equals upper I Subscript z y Baseline equals integral Underscript upper A Endscripts y prime z prime d y prime d z Superscript prime Baseline (B.3)

Here, the first two terms are called the second moment of area with respect to the y and z axes, respectively. The last term is called the product moment of area. There is a further moment linked to the torsion of the beam, the polar moment of area Jxx

upper J Subscript x x Baseline equals integral Underscript upper A Endscripts r squared d y prime d z Superscript prime Baseline (B.4)

The polar moment is related to the area moment by the perpendicular axis theorem:

upper J Subscript x x Baseline equals integral Underscript upper A Endscripts r squared d y prime d z Superscript prime Baseline equals integral Underscript upper A Endscripts left-parenthesis y Superscript prime 2 Baseline plus z Superscript prime 2 Baseline right-parenthesis d y prime d z Superscript prime Baseline equals upper I Subscript y y Baseline plus upper I Subscript z z (B.5)

If, for instance, a beam is made up of several standard sections or it is mounted on a plate that defines the neutral axis, the transformation to different axes is required. The moments of area regarding the axes y0 and z0 are:

upper I Subscript y y Baseline equals upper A z 0 squared plus upper I Subscript y y prime (B.6)
upper I Subscript z z Baseline equals upper A y 0 squared plus upper I Subscript z z prime (B.7)
upper I Subscript y z Baseline equals upper A z 0 y 0 plus upper I Subscript y z prime (B.8)

In addition one might rotate the coordinate system around the center by α leading to the new axes y,z. The updated moments are

upper I Subscript y y double-prime Baseline equals one-half left-parenthesis upper I Subscript y y prime Baseline plus upper I Subscript z z prime Baseline right-parenthesis plus one-half left-parenthesis upper I Subscript y y prime Baseline minus upper I Subscript z z prime Baseline right-parenthesis cosine 2 alpha minus upper I Subscript y z prime Baseline sine 2 alpha (B.9)
upper I Subscript z z double-prime Baseline equals one-half left-parenthesis upper I Subscript y y prime Baseline plus upper I Subscript z z prime Baseline right-parenthesis minus one-half left-parenthesis upper I Subscript y y prime Baseline minus upper I Subscript z z prime Baseline right-parenthesis cosine 2 alpha plus upper I Subscript y z prime Baseline sine 2 alpha (B.10)
upper I Subscript y z double-prime Baseline equals one-half left-parenthesis upper I Subscript y y prime Baseline minus upper I Subscript z z prime Baseline right-parenthesis sine 2 alpha plus upper J Subscript y z prime Baseline cosine 2 alpha (B.11)

From Equation (B.11) it follows that you can always find an angle α with Iyz=0

tangent 2 alpha equals StartFraction 2 upper I Subscript y z prime Baseline Over upper I Subscript z z prime Baseline minus upper I Subscript y y prime Baseline EndFraction (B.12)

Those axes that fulfill this requirement are called the principle axes of the cross-section. For symmetric sections they coincide with the axes of symmetry.

B.2 Wave Transmission

In contrast to the hybrid coupling loss factor formulation from section 7.3 based on the diffuse field reciprocity, the wave based theory relies on the transmission and reflection of plane waves. This theory was derived by Langley and Heron (1990) for plate edges and from Langley and Shorter (2003) for point connections. For plane acoustic waves a similar approach was shown in section 2.6 for the introduction of the wave transmission coefficient. The coupling loss factor can equivalently be derived from the transmission coefficient. For one- and two-dimensional junctions, the diffuse field transmission must then be calculated by averaging over the appropriate angles.

For plates we have four wave types, and the transmission and reflection is rather complex and must be expressed by several transmission coefficients. For arbitrary line junctions the extension to plane wave transmission based on the theory shown in section 8.2.5.1 is achieved by extending the solution of pure radiating waves in Equations (8.115)–(8.118) by selecting one specific incoming wave from

StartLayout 1st Row 1st Column Start 4 By 1 Matrix 1st Row bold-italic u 2nd Row bold-italic v 3rd Row bold-italic w 4th Row bold-italic beta Subscript x EndMatrix 2nd Column equals Start 4 By 4 Matrix 1st Row 1st Column k Subscript x Baseline 2nd Column j mu Subscript upper S Baseline 3rd Column 0 4th Column 0 2nd Row 1st Column j mu Subscript upper L Baseline 2nd Column minus k Subscript x Baseline 3rd Column 0 4th Column 0 3rd Row 1st Column 0 2nd Column 0 3rd Column 1 4th Column 1 4th Row 1st Column 0 2nd Column 0 3rd Column mu Subscript upper B Baseline 1 Baseline 4th Column mu Subscript upper B Baseline 2 Baseline EndMatrix Start 4 By 1 Matrix 1st Row bold upper Psi Subscript upper L Baseline e Superscript mu Super Subscript upper L Superscript y Baseline 2nd Row bold upper Psi Subscript upper S Baseline e Superscript mu Super Subscript upper S Superscript y Baseline 3rd Row bold upper Psi Subscript upper B Baseline 1 Baseline e Superscript mu Super Subscript upper B Baseline 1 Superscript y Baseline 4th Row bold upper Psi Subscript upper B Baseline 2 Baseline e Superscript mu Super Subscript upper B Baseline 1 Superscript y Baseline EndMatrix e Superscript minus j k Super Subscript x Superscript x EndLayout (B.13)

For y=0 we get the edge formulation as in Equation (8.133). In short form the out-going wave field of (B.13) reads:

Start 1 By 1 Matrix 1st Row bold-italic q left-parenthesis x comma y right-parenthesis EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic upper T Subscript normal upper Psi Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold upper Psi Subscript out Baseline left-parenthesis x comma y right-parenthesis EndMatrix (B.14)

Applying the differential equations of the free edge (8.108a)–(8.108d) to the above solution of four radiating waves gives the equations of motion in wave amplitude coordinates as given by the block matrices from (8.120) and (8.123).

StartLayout 1st Row 1st Column Start 4 By 1 Matrix 1st Row bold-italic upper F prime Subscript x 2nd Row bold-italic upper F prime Subscript y 3rd Row bold-italic upper F prime Subscript z 4th Row bold-italic upper M prime Subscript x EndMatrix 2nd Column equals Start 1 By 1 Matrix 1st Row bold-italic upper S Subscript dir Superscript prime Baseline EndMatrix Start 4 By 1 Matrix 1st Row bold upper Psi Subscript upper L Baseline 2nd Row bold upper Psi Subscript upper S Baseline 3rd Row bold upper Psi Subscript upper B Baseline 1 Baseline 4th Row bold upper Psi Subscript upper B Baseline 2 Baseline EndMatrix 2nd Row 1st Column Start 1 By 1 Matrix 1st Row bold-italic upper S prime Subscript d i r EndMatrix 2nd Column equals ellipsis 3rd Row 1st Column Blank 2nd Column Start 4 By 4 Matrix 1st Row 1st Column minus 2 upper S mu Subscript upper L Baseline k Subscript x 2nd Column j upper S left-parenthesis k Subscript upper S Superscript 2 Baseline minus 2 k Subscript x Superscript 2 Baseline right-parenthesis 3rd Column 0 4th Column 0 2nd Row 1st Column j upper S left-parenthesis k Subscript upper S Superscript 2 Baseline minus 2 k Subscript x Superscript 2 Baseline right-parenthesis 2nd Column minus upper S k Subscript x Baseline mu Subscript upper S 3rd Column 0 4th Column 0 3rd Row 1st Column 0 2nd Column 0 3rd Column upper B left-parenthesis mu Subscript upper B Baseline 1 Superscript 3 Baseline minus left-parenthesis 2 minus nu right-parenthesis mu Subscript upper B Baseline 1 Baseline k Subscript x Superscript 2 Baseline right-parenthesis 4th Column upper B left-parenthesis mu Subscript upper B Baseline 2 Superscript 3 Baseline minus left-parenthesis 2 minus nu right-parenthesis mu Subscript upper B Baseline 2 Baseline k Subscript x Superscript 2 Baseline right-parenthesis 4th Row 1st Column 0 2nd Column 0 3rd Column upper B left-parenthesis nu k Subscript x Superscript 2 Baseline minus mu Subscript upper B Baseline 1 Superscript 2 Baseline right-parenthesis 4th Column upper B left-parenthesis nu k Subscript x Superscript 2 Baseline minus mu Subscript upper B Baseline 2 Superscript 2 Baseline right-parenthesis EndMatrix EndLayout (B.15)

The inverse wave transformation matrix provides the radiation stiffness in edge coordinates

StartLayout 1st Row Start 1 By 1 Matrix 1st Row bold-italic upper F Subscript e Superscript prime Baseline EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic upper S Subscript dir Superscript prime Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic upper T Subscript normal upper Psi EndMatrix Superscript negative 1 Baseline Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma out Baseline EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic upper D Subscript d i r Superscript prime Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma out EndMatrix EndLayout (B.16)

For plates with purely out-going waves, the above equation is valid. Imagine a plate that carries out-going waves and one incoming wave of the form:

StartLayout 1st Row 1st Column Start 1 By 1 Matrix 1st Row q Subscript in comma upper L Baseline left-parenthesis x comma y right-parenthesis EndMatrix 2nd Column equals upper Psi Subscript upper L comma in Baseline Start 4 By 1 Matrix 1st Row k Subscript x Baseline 2nd Row j mu Subscript in comma upper L Baseline 3rd Row 0 4th Row 0 EndMatrix e Superscript mu Super Subscript in comma upper L Superscript y Baseline e Superscript minus j k Super Subscript x Superscript x EndLayout (B.17)
StartLayout 1st Row 1st Column Start 1 By 1 Matrix 1st Row q Subscript in comma upper S Baseline left-parenthesis x comma y right-parenthesis EndMatrix 2nd Column equals upper Psi Subscript in comma upper S Baseline Start 4 By 1 Matrix 1st Row j mu Subscript in comma upper S Baseline 2nd Row minus k Subscript x Baseline 3rd Row 0 4th Row 0 EndMatrix e Superscript mu Super Subscript in comma upper S Superscript y Baseline e Superscript minus j k Super Subscript x Superscript x EndLayout (B.18)
StartLayout 1st Row 1st Column Start 1 By 1 Matrix 1st Row q Subscript in comma upper B Baseline left-parenthesis x comma y right-parenthesis EndMatrix 2nd Column equals upper Psi Subscript in comma upper B Baseline 2 Baseline Start 4 By 1 Matrix 1st Row 0 2nd Row 0 3rd Row 1 4th Row mu Subscript in comma upper B Baseline 2 Baseline EndMatrix e Superscript mu Super Subscript in comma upper B Baseline 2 Superscript y Baseline e Superscript minus j k Super Subscript x Superscript x EndLayout (B.19)

For the incoming waves the evanescent bending wave B1 can be omitted because it cannot propagate. The incoming waves change in sign and are related to the outgoing by

StartLayout 1st Row 1st Column mu Subscript upper L 2nd Column equals minus mu Subscript in comma upper L Baseline 3rd Column mu Subscript upper S 4th Column equals minus mu Subscript in comma upper S Baseline 5th Column mu Subscript upper B Baseline 2 6th Column equals minus mu Subscript in comma upper B Baseline 2 EndLayout

The wave field on the plate carrying both waves, one incoming and all out-going waves, can be described by:

Start 1 By 1 Matrix 1st Row bold-italic q left-parenthesis x comma y right-parenthesis EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic upper T Subscript normal upper Psi Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold upper Psi Subscript out Baseline left-parenthesis x comma y right-parenthesis EndMatrix plus Start 1 By 1 Matrix 1st Row bold-italic q Subscript in Baseline left-parenthesis x comma y right-parenthesis EndMatrix (B.20)

Applying boundary conditions (8.108a)–(8.108d) on the full wave field gives for the specific edge force

StartLayout 1st Row 1st Column Start 1 By 1 Matrix 1st Row bold-italic upper F prime Subscript e EndMatrix 2nd Column equals Start 1 By 1 Matrix 1st Row bold-italic upper S Subscript dir Superscript prime Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Subscript normal upper Psi Baseline EndMatrix plus Start 1 By 1 Matrix 1st Row bold-italic upper F Subscript in Superscript prime Baseline EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic upper S Subscript dir Superscript prime Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic upper T Subscript normal upper Psi EndMatrix Superscript negative 1 Baseline Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal o normal u normal t Baseline EndMatrix plus Start 1 By 1 Matrix 1st Row bold-italic upper F prime Subscript in EndMatrix EndLayout (B.21)
StartLayout 1st Row 1st Column Blank 2nd Column equals Start 1 By 1 Matrix 1st Row bold-italic upper D Subscript dir Superscript prime Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal o normal u normal t Baseline EndMatrix plus Start 1 By 1 Matrix 1st Row bold-italic upper F prime Subscript in EndMatrix EndLayout (B.22)

The edge motion is a combination of both waves. Hence,

Start 1 By 1 Matrix 1st Row bold-italic q Subscript e Baseline EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal o normal u normal t Baseline EndMatrix plus Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal i normal n EndMatrix(24)

and using this gives

StartLayout 1st Row 1st Column Start 1 By 1 Matrix 1st Row bold-italic upper F prime Subscript e EndMatrix 2nd Column equals Start 1 By 1 Matrix 1st Row bold-italic upper D Subscript dir Superscript prime Baseline EndMatrix left-parenthesis Start 1 By 1 Matrix 1st Row bold-italic q Subscript e Baseline EndMatrix minus Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal i normal n Baseline EndMatrix right-parenthesis plus Start 1 By 1 Matrix 1st Row bold-italic upper F prime Subscript in EndMatrix EndLayout (B.23)
StartLayout 1st Row 1st Column Blank 2nd Column equals Start 1 By 1 Matrix 1st Row bold-italic upper D Subscript dir Superscript prime Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Subscript e Baseline EndMatrix minus Start 1 By 1 Matrix 1st Row bold-italic upper D Subscript dir Superscript prime Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal i normal n Baseline EndMatrix plus Start 1 By 1 Matrix 1st Row bold-italic upper F prime Subscript in EndMatrix EndLayout (B.24)

When no external forces are acting on the edge we may rewrite

Start 1 By 1 Matrix 1st Row bold-italic upper D Subscript dir Superscript prime Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Subscript e Baseline EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic upper D Subscript dir Superscript prime Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal i normal n Baseline EndMatrix minus Start 1 By 1 Matrix 1st Row bold-italic upper F prime Subscript in EndMatrix (B.25)

So, the right hand side of the above equation may be interpreted as the blocked force generated by the incoming wave

Start 1 By 1 Matrix 1st Row bold-italic upper F Subscript b comma normal i normal n Superscript prime Baseline EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic upper D Subscript dir Superscript prime Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal i normal n Baseline EndMatrix minus Start 1 By 1 Matrix 1st Row bold-italic upper F prime Subscript in EndMatrix (B.26)

If we assume the mth plate carrys the incoming wave, the global edge motion of the full junction follows from this force transformed into the global edge system

Start 1 By 1 Matrix 1st Row bold-italic upper F Subscript b Baseline 0 comma normal i normal n Superscript prime Baseline EndMatrix equals Start 1 By 1 Matrix 1st Row upper T Superscript left-parenthesis m right-parenthesis Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic upper F prime Subscript b m comma normal i normal n EndMatrix (B.27)

acting on the total stiffness of the full line junction (8.129)

Start 1 By 1 Matrix 1st Row bold-italic upper D prime Subscript tot EndMatrix Subscript e Baseline 0 Baseline Start 1 By 1 Matrix 1st Row bold-italic q Subscript e Baseline 0 Baseline EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic upper F prime Subscript b Baseline 0 comma normal i normal n EndMatrix (B.28)

The solution of (B.28) provides the edge motion in global coordinates. Rotating into the coordinate system of the nth plate and applying the wave transformation matrix provides the amplitude of each wave:

Start 1 By 1 Matrix 1st Row bold-italic q Subscript normal upper Psi n Baseline EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic upper T Subscript normal upper Psi Superscript left-parenthesis n right-parenthesis Baseline EndMatrix Start 1 By 1 Matrix 1st Row upper T Superscript left-parenthesis n right-parenthesis Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Subscript e Baseline 0 EndMatrix (B.29)

For the determination of the transmission coefficient we must calculate the radiated and irradiated power. Due to the infinite length of the line, this must be a length intensity. In addition, it is weighted by the angle φm to consider only the component orthogonal to the line edge.

normal upper Pi prime Subscript m comma j Baseline equals upper E double-prime c Subscript gr comma m v Baseline sine left-parenthesis phi Subscript v Superscript left-parenthesis m right-parenthesis Baseline right-parenthesis (B.30)

With m denoting the subsystem, v the wave type (L,S,B). For example cgr,mv is the group velocity of the v-wave of the mth plate. The energy density follows from the area density M=ρ0h and the displacement amplitudes with1 E=12ρ0hΨ^2

Note that due to the formulation of the in-plane wave propagation, Ψv is not the displacement amplitude in these cases. The amplitudes are kLΨL, kSΨS and ΨB2 for longitudinal, shear and bending waves, respectively.

Finally the intensities for each wave type are

StartLayout 1st Row 1st Column normal upper Pi prime Subscript upper L 2nd Column equals one-half rho 0 h omega cubed k Subscript upper L Baseline normal upper Psi Subscript upper L Superscript 2 Baseline sine theta Subscript upper L EndLayout (B.31)
StartLayout 1st Row 1st Column normal upper Pi prime Subscript upper S 2nd Column equals one-half rho 0 h omega cubed k Subscript upper S Baseline normal upper Psi Subscript upper S Superscript 2 Baseline sine theta Subscript upper S EndLayout (B.32)
StartLayout 1st Row 1st Column normal upper Pi prime Subscript upper B 2nd Column equals rho 0 h omega cubed slash k Subscript upper B Baseline normal upper Psi Subscript upper B Superscript 2 Baseline sine theta Subscript upper B EndLayout (B.33)

The incoming wave and angle drives the wavenumber kx; the transmitted angles follow from the transmitted wavenumbers

cosine phi Subscript v Superscript left-parenthesis m right-parenthesis Baseline equals k Subscript x Baseline slash k Subscript m v (B.34)

Finally the transmission coefficient follows from the ratio of transmitted to irradiated intensity

tau Subscript m j comma n k Baseline equals StartFraction normal upper Pi prime Subscript n k Baseline left-parenthesis k Subscript x Baseline right-parenthesis Over normal upper Pi prime Subscript m j Baseline left-parenthesis k Subscript x Baseline right-parenthesis EndFraction (B.35)

When kx>kmv there will be no solution for φv(m) and τ=0. So, not all wave types are available for all angles. For example in Figure B.2 the full angle of the shear wave leads to a minimal angle that does not start at zero, because longitudinal waves occur first when the projected wavenumber kx is equal to or smaller than kL.

Figure B.2 Angle range for shear wave with given 0–90 range of longitudinal wave. Source: Alexander Peiffer.

The wave transmission theory has one advantage: it is also valid for strong coupling, for example a transmission factor of τ=1 when similar plates are coupled together at an angle of 180. The diffuse field reciprocity requires a diffuse field, which is hard to achieve with fully coupled and therefore fully absorbing boundary conditions.

B.2.1 The Blocked Forces Interpretation

The following term was described in Section B.2 as the blocked force

Start 1 By 1 Matrix 1st Row bold-italic upper F Subscript b Superscript prime Baseline EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic upper D Subscript dir Superscript prime Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal i normal n Baseline EndMatrix minus Start 1 By 1 Matrix 1st Row bold-italic upper F prime Subscript in EndMatrix (B.36)

It is worth illustrating this fact in more detail. The incoming wave generates the force Fin given by the boundary conditions of the edge and an edge motion qe,in. In order to achieve the bocked boundary condition, a force must act in such a way on the boundary that it excites an out-going that matches exactly the incoming wave with negative sign, thus:

Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal o normal u normal t Baseline EndMatrix equals minus Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal i normal n EndMatrix (B.37)

This force is given by

Start 1 By 1 Matrix 1st Row bold-italic upper F Subscript e comma normal o normal u normal t Baseline EndMatrix equals Start 1 By 1 Matrix 1st Row bold-italic upper D Subscript dir Superscript prime Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal o normal u normal t Baseline EndMatrix equals minus Start 1 By 1 Matrix 1st Row bold-italic upper D Subscript dir Superscript prime Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal i normal n EndMatrix (B.37)

So in total, the edge must act with force {Fin}[Ddir]{qe,in} in order to block the edge motion of an incoming wave. From the force balance follows that the incoming and reflected wave acts with the force as shown in Equation (B.26).

Figure B.3 In-coming and out-going waves assuring the blocked condition at boundary y=0. Source: Alexander Peiffer.

There are further consequences. First, for the calculation of waves that are reflected in one sense but transmitted into a different wave type but the same plate, the reflected blocked force components must by subtracted. The easiest way to do so is to subtract qe,in from the global solution in Equation (B.28). Second, for the realization of the blocked force of one wave type, the in-plane wave requires both in-plane waves. Thus, there is an inert exchange of energy between both subystems that breaks the rule for the diffuse field reciprocity.

In the remainder of Section B.2, the blocked forces for each wave type are derived in detail. According to the diffuse field reciprocity (7.19), this blocked force is also given by the free field radiation stiffness of each wave type. This separation into waves is clear for bending waves, but not for the in-plane waves where the edge motion usually generates a combination of both wave types, shear and longitudinal waves.

B.2.2 Bending Waves

The wave solution for incoming bending waves relies on the positive and real wavenumber solution kB and μ in,B2=+kx2kB2=μB2. Using this and setting the evanescent wave ΨB1=0, the incoming wave reads as

StartLayout 1st Row 1st Column bold-italic w equals 2nd Column bold upper Psi Subscript upper B Baseline 2 Baseline e Superscript minus mu Super Subscript upper B Baseline 2 Superscript y Baseline e Superscript minus j k Super Subscript x Superscript x plus j omega t EndLayout (B.39)
StartLayout 1st Row 1st Column beta Subscript x Baseline equals mu Subscript upper B Baseline 2 Baseline 2nd Column bold upper Psi Subscript upper B Baseline 2 Baseline e Superscript minus mu Super Subscript upper B Baseline 2 Superscript y Baseline e Superscript minus j k Super Subscript x Superscript x plus j omega t Baseline less-than l a b e l greater-than upper B Baseline .39 less-than slash l a b e l greater-than EndLayout (B.40)

With y=0 we get the edge displacement:

StartLayout 1st Row 1st Column Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal i normal n EndMatrix 2nd Column equals StartBinomialOrMatrix bold-italic w Subscript e comma normal i normal n Baseline Choose beta Subscript x comma e comma normal i normal n Baseline EndBinomialOrMatrix equals bold upper Psi Subscript upper B Baseline 2 Baseline StartBinomialOrMatrix 1 Choose minus mu Subscript upper B Baseline 2 EndBinomialOrMatrix EndLayout (B.41)

and for the traction force vector

StartLayout 1st Row 1st Column Start 1 By 1 Matrix 1st Row bold-italic upper F prime Subscript e comma normal i normal n EndMatrix 2nd Column equals minus bold upper Psi Subscript upper B Baseline 2 Baseline upper B StartBinomialOrMatrix mu Subscript upper B Baseline 2 Superscript 3 Baseline minus left-parenthesis 2 minus nu right-parenthesis k Subscript x Superscript 2 Baseline mu Subscript upper B Baseline 2 Baseline Choose mu Subscript upper B Baseline 2 Superscript 2 Baseline minus nu k Subscript x Superscript 2 EndBinomialOrMatrix EndLayout (B.42)

The reaction to the edge displacement follows from the radiation stiffness times the edge motion

Start 1 By 1 Matrix 1st Row bold-italic upper D Subscript e comma normal d normal i normal r Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal i normal n Baseline EndMatrix equals bold upper Psi Subscript upper B Baseline 2 Baseline upper B StartBinomialOrMatrix 2 mu Subscript upper B Baseline 1 Baseline mu Subscript upper B Baseline 2 Superscript 2 Baseline plus mu Subscript upper B Baseline 1 Superscript 2 Baseline mu Subscript upper B Baseline 2 Baseline plus nu k Subscript x Superscript 2 Baseline mu Subscript upper B Baseline 2 Baseline Choose minus 2 mu Subscript upper B Baseline 1 Baseline mu Subscript upper B Baseline 2 Baseline minus nu k Subscript x Superscript 2 Baseline minus mu Subscript upper B Baseline 2 Superscript 2 EndBinomialOrMatrix (B.43)

Using these equations in (B.36) gives the blocked reverberant force due to bending waves

Start 1 By 1 Matrix 1st Row bold-italic upper F Subscript b upper B Superscript prime Baseline EndMatrix equals 2 upper B bold upper Psi Subscript upper B Baseline 2 Baseline StartBinomialOrMatrix mu Subscript upper B Baseline 1 Baseline mu Subscript upper B Baseline 2 Superscript 2 Baseline plus mu Subscript upper B Baseline 1 Superscript 2 Baseline mu Subscript upper B Baseline 2 Baseline Choose minus mu Subscript upper B Baseline 1 Baseline mu Subscript upper B Baseline 2 Baseline minus mu Subscript upper B Baseline 2 Superscript 2 EndBinomialOrMatrix (B.44)

For further consideration it is better to replace the propagation constants μB1/2 by wavenumber expressions

StartLayout 1st Row 1st Column mu Subscript upper B Baseline 1 2nd Column equals minus k Subscript y upper B Baseline 1 Baseline equals minus StartRoot k Subscript x Superscript 2 Baseline plus k Subscript upper B Superscript 2 Baseline EndRoot 3rd Column mu Subscript upper B Baseline 1 4th Column equals minus j k Subscript y upper B Baseline 2 Baseline equals minus j StartRoot k Subscript upper B Superscript 2 Baseline minus k Subscript x Superscript 2 Baseline EndRoot EndLayout (B.45)

Using the this convention

Start 1 By 1 Matrix 1st Row bold-italic upper F Subscript b upper B Superscript prime Baseline EndMatrix equals 2 upper B bold upper Psi Subscript upper B Baseline 2 Baseline StartBinomialOrMatrix k Subscript y upper B Baseline 1 Baseline k Subscript y upper B Baseline 2 Superscript 2 Baseline minus j k Subscript y upper B Baseline 1 Superscript 2 Baseline k Subscript y upper B Baseline 2 Baseline Choose minus j k Subscript y upper B Baseline 1 Baseline k Subscript y upper B Baseline 2 Baseline plus k Subscript y upper B Baseline 2 Superscript 2 EndBinomialOrMatrix (B.46)

leads to the cross spectral density matrix:

Start 1 By 1 Matrix 1st Row upper S Subscript f f Superscript asterisk EndMatrix double-prime Subscript upper B Baseline equals left pointing angle bold-italic upper F prime bold-italic upper F prime Superscript upper H Baseline right pointing angle Subscript upper E Baseline equals 8 upper B squared bold upper Psi Subscript upper B Baseline 2 Superscript 2 Baseline k Subscript y upper B Baseline 2 Superscript 2 Baseline k Subscript upper B Superscript 2 Baseline Start 2 By 2 Matrix 1st Row 1st Column k Subscript y upper B Baseline 1 Superscript 2 Baseline 2nd Column k Subscript y upper B Baseline 1 Baseline 2nd Row 1st Column k Subscript y upper B Baseline 1 Baseline 2nd Column 1 EndMatrix (B.47)

This cross spectrum is per square length, as the force is a specific force per length.

For the consideration of the reciprocity, the modal density of plates and expression for the total energy is required. As explained in section 8.2.4.1, the plane wave formulation with the projected wavenumber as degree of freedom has to be treated as a one-dimensional system.

n Subscript 1 upper D Baseline left-parenthesis omega right-parenthesis equals StartFraction upper L Over 2 pi c Subscript gr Baseline EndFraction (B.48)

From Figure B.4 it follows that the effective length L follows from Ly and the wavenumber ratio.

StartFraction upper L Over upper L Subscript y Baseline EndFraction equals StartFraction k Subscript upper B Baseline Over k Subscript y upper B Baseline 2 Baseline EndFraction (B.49)

Figure B.4 Effective subsystem length for plane waves in two-dimensional systems.

Together with cgr=2cB, we get the modal density

n Subscript 1 upper D Baseline left-parenthesis omega right-parenthesis equals StartFraction upper L Subscript y Baseline k Subscript upper B Superscript 2 Baseline Over 4 pi k Subscript y upper B Baseline 2 Baseline omega EndFraction (B.50)

The energy in the plate subsystem is given by

upper E equals StartFraction omega squared Over 2 EndFraction bold upper Psi Subscript upper B Baseline 2 Superscript 2 Baseline rho 0 h upper A with upper A equals upper L Subscript x Baseline upper L Subscript y Baseline (B.51)

In this case the energy length density is required, thus

upper E prime equals StartFraction upper E Over upper L Subscript x Baseline EndFraction equals StartFraction omega squared Over 2 EndFraction bold upper Psi Subscript upper B Baseline 2 Superscript 2 Baseline rho 0 h upper L Subscript y (B.52)

For the determination of the radiation stiffness, the same convention of the propagation constants (B.45) is used

StartLayout 1st Row 1st Column upper I m Start 1 By 1 Matrix 1st Row bold-italic upper D prime Subscript dir EndMatrix Subscript upper B 2nd Column equals upper B upper I m Start 2 By 2 Matrix 1st Row 1st Column minus mu Subscript upper B Baseline 1 Superscript 2 Baseline mu Subscript upper B Baseline 2 Baseline plus mu Subscript upper B Baseline 1 Baseline mu Subscript upper B Baseline 2 Superscript 2 Baseline 2nd Column mu Subscript upper B Baseline 1 Baseline mu Subscript upper B Baseline 2 Baseline minus nu k Subscript x Superscript 2 Baseline 2nd Row 1st Column mu Subscript upper B Baseline 1 Baseline mu Subscript upper B Baseline 2 Baseline plus nu k Subscript x Superscript 2 Baseline 2nd Column minus mu Subscript upper B Baseline 1 Baseline plus mu Subscript upper B Baseline 2 Baseline EndMatrix equals upper B k Subscript y upper B Baseline 2 Baseline Start 2 By 2 Matrix 1st Row 1st Column k Subscript upper B Baseline 1 Superscript 2 Baseline 2nd Column k Subscript upper B Baseline 1 Baseline 2nd Row 1st Column k Subscript upper B Baseline 1 Baseline 2nd Column k Subscript upper B Baseline 1 Baseline EndMatrix period EndLayout (B.53)

With the modified length specific diffuse field reciprocity (7.19) we get finally:

StartLayout 1st Row 1st Column Start 1 By 1 Matrix 1st Row upper S Subscript f f EndMatrix double-prime Subscript upper B 2nd Column equals StartFraction 4 upper E prime Over pi omega n Subscript 1 upper D Baseline left-parenthesis omega right-parenthesis EndFraction upper I m Start 1 By 1 Matrix 1st Row bold-italic upper D prime Subscript dir EndMatrix Subscript upper B Baseline 2nd Row 1st Column Blank 2nd Column equals 8 bold upper Psi Subscript upper B Baseline 2 Superscript 2 Baseline k Subscript y upper B Baseline 2 Baseline k Subscript upper B Superscript 2 Baseline ModifyingBelow StartFraction rho 0 h omega squared Over k Subscript upper B Superscript 4 Baseline EndFraction With bottom-brace Underscript equals upper B Endscripts upper I m Start 1 By 1 Matrix 1st Row bold-italic upper D prime Subscript dir EndMatrix Subscript upper B Baseline 3rd Row 1st Column Blank 2nd Column equals 8 upper B squared bold upper Psi Subscript upper B Baseline 2 Superscript 2 Baseline k Subscript y upper B Baseline 2 Superscript 2 Baseline k Subscript upper B Superscript 2 Baseline Start 2 By 2 Matrix 1st Row 1st Column k Subscript y upper B Baseline 1 Superscript 2 Baseline 2nd Column k Subscript y upper B Baseline 1 Baseline 2nd Row 1st Column k Subscript y upper B Baseline 1 Baseline 2nd Column 1 EndMatrix EndLayout

This proves the diffuse field reciprocity in case of bending waves of homogeneous plates.

B.2.3 Longitudinal Waves

The wave solution for incoming longitudinal waves relies on the positive solution μin,L=+kx2kL2=μL. Using this the incoming wave reads as:

StartLayout 1st Row 1st Column bold-italic u equals 2nd Column bold upper Psi Subscript upper L Baseline k Subscript x Baseline e Superscript minus mu Super Subscript upper L Superscript y Baseline e Superscript minus j k Super Subscript x Superscript x plus j omega t EndLayout (B.54)
StartLayout 1st Row 1st Column bold-italic v equals 2nd Column bold upper Psi Subscript upper L Baseline minus j mu Subscript upper L Baseline e Superscript minus mu Super Subscript upper L Superscript y Baseline e Superscript minus j k Super Subscript x Superscript x plus j omega t EndLayout (B.55)

with y=0 we get the edge displacement

StartLayout 1st Row 1st Column Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal i normal n EndMatrix 2nd Column equals StartBinomialOrMatrix bold-italic u Subscript e comma normal i normal n Baseline Choose bold-italic v Subscript e comma normal i normal n Baseline EndBinomialOrMatrix equals bold upper Psi Subscript upper L Baseline StartBinomialOrMatrix k Subscript x Baseline Choose minus j mu Subscript upper L EndBinomialOrMatrix EndLayout (B.56)

and for the traction force vector

StartLayout 1st Row 1st Column Start 1 By 1 Matrix 1st Row bold-italic upper F prime Subscript e comma normal i normal n EndMatrix 2nd Column equals minus bold upper Psi Subscript upper L Baseline upper S StartBinomialOrMatrix minus 2 k Subscript x Baseline mu Subscript upper L Baseline Choose j left-parenthesis 2 k Subscript x Superscript 2 Baseline minus k Subscript x Superscript 2 Baseline right-parenthesis EndBinomialOrMatrix EndLayout (B.57)

The reaction to the edge displacement follows from the radiation stiffness times the edge motion

Start 1 By 1 Matrix 1st Row bold-italic upper D Subscript e comma normal d normal i normal r Baseline EndMatrix Start 1 By 1 Matrix 1st Row bold-italic q Subscript e comma normal i normal n Baseline EndMatrix equals bold upper Psi Subscript upper L Baseline upper S StartBinomialOrMatrix 2 k Subscript x Baseline mu Subscript upper L Baseline left-parenthesis 1 minus StartFraction k Subscript s Superscript 2 Baseline Over k Subscript x Superscript 2 Baseline minus mu Subscript upper S Baseline mu Subscript upper L Baseline EndFraction right-parenthesis Choose minus j left-bracket 2 k Subscript x Superscript 2 Baseline plus k Subscript s Superscript 2 Baseline left-parenthesis 1 minus StartFraction 2 k Subscript x Superscript 2 Baseline Over k Subscript x Superscript 2 Baseline minus mu Subscript upper S Baseline mu Subscript upper L Baseline EndFraction right-parenthesis right-bracket EndBinomialOrMatrix (B.58)

Using these equations in (B.36) gives the blocked force due to longitudinal waves

Start 1 By 1 Matrix 1st Row bold-italic upper F Subscript b upper L Superscript prime Baseline EndMatrix equals StartFraction 2 upper S bold upper Psi Subscript upper L Baseline k Subscript s Superscript 2 Baseline Over k Subscript x Superscript 2 Baseline minus mu Subscript upper S Baseline mu Subscript upper L Baseline EndFraction StartBinomialOrMatrix minus k Subscript x Baseline mu Subscript upper L Baseline Choose j mu Subscript upper S Baseline mu Subscript upper L EndBinomialOrMatrix (B.59)

For further consideration the propagation constants μL/S are replaced by wavenumber expressions

StartLayout 1st Row 1st Column mu Subscript upper L 2nd Column equals minus j k Subscript y upper L Baseline equals minus j StartRoot k Subscript upper L Superscript 2 Baseline minus k Subscript x Superscript 2 Baseline EndRoot 3rd Column mu Subscript upper S 4th Column equals minus j k Subscript y upper S Baseline equals minus j StartRoot k Subscript upper S Superscript 2 Baseline minus k Subscript x Superscript 2 Baseline EndRoot EndLayout (B.60)

Using this convention

Start 1 By 1 Matrix 1st Row bold-italic upper F Subscript b upper L Superscript prime Baseline EndMatrix equals StartFraction 2 upper S bold upper Psi Subscript upper L Baseline k Subscript s Superscript 2 Baseline Over k Subscript x Superscript 2 Baseline minus mu Subscript upper S Baseline mu Subscript upper L Baseline EndFraction StartBinomialOrMatrix plus j k Subscript x Baseline k Subscript y upper L Baseline Choose minus j k Subscript y upper S Baseline k Subscript y upper L EndBinomialOrMatrix (B.61)

leads to the cross spectral density matrix

Start 1 By 1 Matrix 1st Row upper S Subscript f f Superscript asterisk EndMatrix double-prime Subscript upper L Baseline equals left pointing angle bold-italic upper F prime bold-italic upper F prime Superscript upper H Baseline right pointing angle Subscript upper E Baseline equals StartFraction 4 upper S squared bold upper Psi Subscript upper L Superscript 2 Baseline k Subscript s Superscript 4 Baseline k Subscript y upper L Superscript 2 Baseline Over left-parenthesis k Subscript x Superscript 2 Baseline plus k Subscript y upper S Baseline k Subscript y upper L Baseline right-parenthesis squared EndFraction Start 2 By 2 Matrix 1st Row 1st Column k Subscript x Superscript 2 Baseline 2nd Column minus k Subscript y upper S Baseline k Subscript x Baseline 2nd Row 1st Column minus k Subscript y upper S Baseline k Subscript x Baseline 2nd Column k Subscript y upper S Superscript 2 EndMatrix (B.62)

With the effective length

StartFraction upper L Over upper L Subscript y Baseline EndFraction equals StartFraction k Subscript upper L Baseline Over k Subscript y upper L Baseline EndFraction (B.63)

and the fact that for L and S-waves, the group velocity equals the phase velocity cgr=cL, we get the modal density

n Subscript 1 upper D Baseline left-parenthesis omega right-parenthesis equals StartFraction upper L Subscript y Baseline k Subscript upper L Superscript 2 Baseline Over 2 pi k Subscript y upper L Baseline omega EndFraction (B.64)

The energy in the plate subsystem is given by

upper E equals one-half left-parenthesis bold upper Psi Subscript upper L Baseline k Subscript upper L Baseline right-parenthesis squared rho 0 h upper A with upper A equals upper L Subscript x Baseline upper L Subscript y Baseline (B.65)

Note that the amplitude for in-plane waves is given as a product including the wavenumber. So, the longitudinal wave amplitude displacement is given by Ψ^LkL. The energy length density reads as

upper E prime equals StartFraction upper E Over upper L Subscript x Baseline EndFraction equals one-half left-parenthesis bold upper Psi Subscript upper L Baseline k Subscript upper L Baseline right-parenthesis squared rho 0 h upper L Subscript y (B.66)

The diffuse field reciprocity requires the following expression to relate the radiation stiffness to the cross spectrum

StartFraction 4 upper E prime Over pi omega n Subscript 1 upper D Baseline left-parenthesis omega right-parenthesis EndFraction equals 4 rho 0 h bold upper Psi Subscript upper L Superscript 2 Baseline omega squared k Subscript y upper L

In the above equation the mass per area can be replaced using the expression for the wavenumber (3.167)

k Subscript upper L Superscript 2 Baseline equals StartFraction omega squared left-parenthesis 1 plus nu right-parenthesis left-parenthesis 1 minus nu right-parenthesis rho 0 Over upper E EndFraction equals StartFraction omega squared left-parenthesis 1 minus nu right-parenthesis rho 0 h Over 2 upper S EndFraction

With the identity ks2=2kL2/(1ν) we get

StartFraction 4 upper E prime Over pi omega n Subscript 1 upper D Baseline left-parenthesis omega right-parenthesis EndFraction equals StartFraction 4 upper S Baseline 2 k Subscript upper L Superscript 2 Baseline bold upper Psi Subscript upper L Superscript 2 Baseline k Subscript y upper L Baseline Over left-parenthesis 1 minus nu right-parenthesis EndFraction equals 4 upper S bold upper Psi Subscript upper L Superscript 2 Baseline k Subscript s Superscript 2 Baseline k Subscript y upper L (B.67)

With the modified length specific diffuse field reciprocity (7.19) we get finally

StartLayout 1st Row 1st Column Start 1 By 1 Matrix 1st Row upper S Subscript f f EndMatrix double-prime Subscript upper B 2nd Column equals StartFraction 4 upper E prime Over pi omega n Subscript 1 upper D Baseline left-parenthesis omega right-parenthesis EndFraction upper I m Start 1 By 1 Matrix 1st Row bold-italic upper D prime Subscript dir EndMatrix Subscript upper B Baseline 2nd Row 1st Column Blank 2nd Column equals 8 bold upper Psi Subscript upper B Baseline 2 Superscript 2 Baseline k Subscript y upper B Baseline 2 Baseline k Subscript upper B Superscript 2 Baseline ModifyingBelow StartFraction rho 0 h omega squared Over k Subscript upper B Superscript 4 Baseline EndFraction With bottom-brace Underscript equals upper B Endscripts upper I m Start 1 By 1 Matrix 1st Row bold-italic upper D prime Subscript dir EndMatrix Subscript upper B Baseline 3rd Row 1st Column Blank 2nd Column equals 8 upper B squared bold upper Psi Subscript upper B Baseline 2 Superscript 2 Baseline k Subscript y upper B Baseline 2 Superscript 2 Baseline k Subscript upper B Superscript 2 Baseline Start 2 By 2 Matrix 1st Row 1st Column k Subscript y upper B Baseline 1 Superscript 2 Baseline 2nd Column k Subscript y upper B Baseline 1 Baseline 2nd Row 1st Column k Subscript y upper B Baseline 1 Baseline 2nd Column 1 EndMatrix EndLayout (B.68)

This matrix can be used as imaginary of the radiation stiffness, but this is not derived from diffuse field reciprocity. The radiation stiffness is defined by a coupled motion of both waves, making it impossible to identify a pure longitudinal wave radiation.

B.2.4 Shear Waves

Following the similar procedure as in section B.2.3 with an incoming shear wave, the blocked force reads

Start 1 By 1 Matrix 1st Row bold-italic upper F Subscript b upper S Superscript prime Baseline EndMatrix equals StartFraction 2 upper S bold upper Psi Subscript upper S Baseline k Subscript s Superscript 2 Baseline Over k Subscript x Superscript 2 Baseline minus mu Subscript upper S Baseline mu Subscript upper L Baseline EndFraction StartBinomialOrMatrix j mu Subscript upper S Baseline mu Subscript upper L Baseline Choose k Subscript x Baseline mu Subscript upper S EndBinomialOrMatrix (B.69)

As illustrated in Figure B.2, there is an angle or wavenumber range where both propagation constants are complex, but also a range where μL is real and only μS remains imaginary. For kxkL we use (B.60)

Start 1 By 1 Matrix 1st Row bold-italic upper F Subscript b upper S Superscript prime Baseline EndMatrix equals StartFraction 2 upper S bold upper Psi Subscript upper S Baseline k Subscript s Superscript 2 Baseline Over k Subscript x Superscript 2 Baseline minus mu Subscript upper S Baseline mu Subscript upper L Baseline EndFraction StartBinomialOrMatrix minus j k Subscript y upper S Baseline k Subscript y upper L Baseline Choose minus j k Subscript x Baseline k Subscript y upper S EndBinomialOrMatrix (B.70)

giving the following blocked force matrix

Start 1 By 1 Matrix 1st Row upper S Subscript f zero width space zero width space f Superscript asterisk EndMatrix double-prime Subscript upper S Baseline equals left pointing angle bold-italic upper F prime bold-italic upper F Superscript prime upper H Baseline right pointing angle Subscript upper E Baseline equals StartFraction 4 upper S squared bold upper Psi Subscript upper S Superscript 2 Baseline k Subscript s Superscript 4 Baseline k Subscript y upper S Superscript 2 Baseline Over left-parenthesis k Subscript x Superscript 2 Baseline plus k Subscript y upper S Baseline k Subscript y upper L Baseline right-parenthesis squared EndFraction Start 2 By 2 Matrix 1st Row 1st Column k Subscript y upper L Superscript 2 Baseline 2nd Column k Subscript y upper L Baseline k Subscript x Baseline 2nd Row 1st Column k Subscript y upper L Baseline k Subscript x Baseline 2nd Column k Subscript x Superscript 2 EndMatrix (B.71)

Applying shear wave quantities to the one-dimensional modal density and energy gives

StartFraction 4 upper E prime Over pi omega n Subscript 1 upper D Baseline left-parenthesis omega right-parenthesis EndFraction equals 4 rho 0 h bold upper Psi Subscript upper S Superscript 2 Baseline omega squared k Subscript y upper S (B.72)

Using ω2ρ0h=kS2S we get

StartLayout 1st Row 1st Column upper I m Start 1 By 1 Matrix 1st Row bold-italic upper D prime Subscript dir EndMatrix Subscript upper S 2nd Column equals StartFraction Start 1 By 1 Matrix 1st Row upper S Subscript f f Baseline EndMatrix Subscript upper S Baseline Over 4 upper S bold upper Psi Subscript upper S Superscript 2 Baseline k Subscript s Superscript 2 Baseline k Subscript y upper S Baseline EndFraction 2nd Row 1st Column 2nd Column equals StartFraction upper S k Subscript s Superscript 2 Baseline k Subscript y upper S Baseline Over left-parenthesis k Subscript x Superscript 2 Baseline plus k Subscript y upper S Baseline k Subscript y upper S Baseline right-parenthesis squared EndFraction Start 2 By 2 Matrix 1st Row 1st Column k Subscript y upper L Superscript 2 Baseline 2nd Column k Subscript y upper L Baseline k Subscript x Baseline 2nd Row 1st Column k Subscript y upper L Baseline k Subscript x Baseline 2nd Column k Subscript x Superscript 2 EndMatrix EndLayout (B.73)

In the wavenumber range kL<kxkS only kS remains real, and we keep the longitudinal propagation constant

Start 1 By 1 Matrix 1st Row bold-italic upper F Subscript b upper S Superscript prime Baseline EndMatrix equals StartFraction 2 upper S bold upper Psi Subscript upper S Baseline k Subscript s Superscript 2 Baseline Over k Subscript x Superscript 2 Baseline plus j k Subscript y upper S Baseline mu Subscript upper L Baseline EndFraction StartBinomialOrMatrix mu Subscript upper L Baseline k Subscript y upper S Baseline Choose minus j k Subscript x Baseline k Subscript y upper S EndBinomialOrMatrix (B.74)

The cross correlation provides

Start 1 By 1 Matrix 1st Row upper S Subscript f f Superscript asterisk EndMatrix double-prime Subscript upper S Baseline 2 Baseline equals StartFraction 4 upper S squared bold upper Psi Subscript upper S Superscript 2 Baseline k Subscript s Superscript 4 Baseline k Subscript y upper S Superscript 2 Baseline Over k Subscript x Superscript 4 Baseline plus k Subscript y upper S Superscript 2 Baseline mu Subscript upper L Superscript 2 Baseline EndFraction Start 2 By 2 Matrix 1st Row 1st Column mu Subscript upper L Superscript 2 Baseline 2nd Column j mu Subscript upper L Baseline k Subscript x Baseline 2nd Row 1st Column minus j mu Subscript upper L Baseline k Subscript x Baseline 2nd Column k Subscript x Superscript 2 EndMatrix (B.75)

We note that the diffuse field reciprocity is impossible to fulfill here, because the matrix contains imaginary components. However, if we ignore this fact, and with the diffuse field reciprocity factor (B.72), we get

StartLayout 1st Row 1st Column upper I m Start 1 By 1 Matrix 1st Row bold-italic upper D prime Subscript dir EndMatrix Subscript upper S Baseline 2 2nd Column not-equals StartFraction Start 1 By 1 Matrix 1st Row upper S Subscript f f Baseline EndMatrix double-prime Subscript upper S Baseline 2 Baseline Over 4 upper S bold upper Psi Subscript upper S Superscript 2 Baseline k Subscript s Superscript 2 Baseline k Subscript y upper S Baseline EndFraction 2nd Row 1st Column Blank 2nd Column equals StartFraction upper S k Subscript s Superscript 2 Baseline k Subscript y upper S Baseline Over k Subscript x Superscript 4 Baseline plus k Subscript y upper S Superscript 2 Baseline mu Subscript upper L Superscript 2 Baseline EndFraction Start 2 By 2 Matrix 1st Row 1st Column mu Subscript upper L Superscript 2 Baseline 2nd Column j mu Subscript upper L Baseline k Subscript x Baseline 2nd Row 1st Column minus j mu Subscript upper L Baseline k Subscript x Baseline 2nd Column k Subscript x Superscript 2 EndMatrix EndLayout (B.76)

B.2.5 In-plane Waves

Both waves can be combined by adding both radiation imaginary parts of the radiation stiffnesses (B.68) and (B.73)

StartLayout 1st Row 1st Column upper I m Start 1 By 1 Matrix 1st Row bold-italic upper D prime Subscript dir EndMatrix Subscript upper S upper L 2nd Column equals upper I m Start 1 By 1 Matrix 1st Row bold-italic upper D prime Subscript dir EndMatrix Subscript upper L Baseline plus upper I m Start 1 By 1 Matrix 1st Row bold-italic upper D prime Subscript dir EndMatrix Subscript upper S Baseline 2nd Row 1st Column Blank 2nd Column equals StartFraction upper S k Subscript s Superscript 2 Baseline Over left-parenthesis k Subscript x Superscript 2 Baseline plus k Subscript y upper S Baseline k Subscript y upper L Baseline right-parenthesis squared EndFraction Start 2 By 2 Matrix 1st Row 1st Column k Subscript y upper L Baseline k Subscript x Superscript 2 Baseline plus k Subscript y upper S Baseline k Subscript y upper L Superscript 2 Baseline 2nd Column minus k Subscript y upper S Baseline k Subscript y upper L Baseline k Subscript x Baseline plus k Subscript y upper S Baseline k Subscript y upper L Baseline k Subscript x Baseline 2nd Row 1st Column minus k Subscript y upper S Baseline k Subscript y upper L Baseline k Subscript x Baseline plus k Subscript y upper S Baseline k Subscript y upper L Baseline k Subscript x Baseline 2nd Column k Subscript y upper L Baseline k Subscript y upper S Superscript 2 Baseline plus k Subscript y upper S Baseline k Subscript x Superscript 2 Baseline EndMatrix 3rd Row 1st Column Blank 2nd Column equals StartFraction upper S Over k Subscript x Superscript 2 Baseline plus k Subscript y upper S Baseline k Subscript y upper L Baseline EndFraction Start 2 By 2 Matrix 1st Row 1st Column k Subscript y upper L Baseline k Subscript s Superscript 2 Baseline 2nd Column 0 2nd Row 1st Column 0 2nd Column k Subscript y upper S Baseline k Subscript s Superscript 2 EndMatrix EndLayout (B.77)

In contrast to this the imaginary of the in-plane stiffness matrix (8.121) reads

StartLayout 1st Row 1st Column upper I m Start 1 By 1 Matrix 1st Row bold-italic upper D prime Subscript dir EndMatrix Subscript upper S upper L 2nd Column equals StartFraction upper S Over k Subscript x Superscript 2 Baseline plus k Subscript y upper S Baseline k Subscript y upper L Baseline EndFraction Start 2 By 2 Matrix 1st Row 1st Column k Subscript y upper L Baseline k Subscript upper S Superscript 2 Baseline 2nd Column minus k Subscript x Baseline left-parenthesis minus 2 k Subscript y upper S Baseline k Subscript y upper S Baseline plus k Subscript upper S Superscript 2 Baseline minus 2 k Subscript x Superscript 2 Baseline right-parenthesis 2nd Row 1st Column a s y m 2nd Column k Subscript y upper S Baseline k Subscript upper S Superscript 2 EndMatrix EndLayout (B.78)

So, except the off diagonal components, the blocked force cross correlation is equal to the imaginary radiation stiffness. This equation is valid for kxkL; for kL<kxkS, Equation (B.76) must be used as there is no propagating longitudinal wave. For the comparison to the combined in-plane stiffness matrix (8.121), we use μS=jkyS and keep μL getting

StartLayout 1st Row 1st Column Start 1 By 1 Matrix 1st Row bold-italic upper D prime Subscript dir EndMatrix Subscript upper S upper L 2nd Column equals StartFraction upper S Over k Subscript x Superscript 2 Baseline minus j k Subscript y upper S Baseline mu Subscript upper L Baseline EndFraction Start 2 By 2 Matrix 1st Row 1st Column minus mu Subscript upper L Baseline k Subscript upper S Superscript 2 Baseline 2nd Column minus k Subscript x Baseline left-parenthesis 2 k Subscript y upper S Baseline mu Subscript upper L Baseline plus j left-parenthesis k Subscript upper S Superscript 2 Baseline minus 2 k Subscript x Superscript 2 Baseline right-parenthesis 2nd Row 1st Column a s y m 2nd Column j k Subscript y upper S Baseline k Subscript upper S Superscript 2 EndMatrix EndLayout (B.79)

Extension of the denominator and extracting the imaginary part gives

StartLayout 1st Row 1st Column upper I m Start 1 By 1 Matrix 1st Row bold-italic upper D prime Subscript dir EndMatrix Subscript upper S upper L 2nd Column equals StartFraction upper S Over k Subscript x Superscript 4 Baseline plus k Subscript y upper S Superscript 2 Baseline mu Subscript upper L Superscript 2 Baseline EndFraction Start 2 By 2 Matrix 1st Row 1st Column k Subscript y upper S Baseline mu Subscript upper L Superscript 2 Baseline k Subscript upper S Superscript 2 Baseline 2nd Column minus k Subscript x Baseline left-parenthesis k Subscript x Superscript 2 Baseline k Subscript upper S Superscript 2 Baseline plus 2 left-parenthesis k Subscript x Superscript 4 Baseline minus mu Subscript upper S Superscript 2 Baseline k Subscript y upper S Superscript 2 Baseline right-parenthesis 2nd Row 1st Column a s y m 2nd Column k Subscript y upper S Baseline k Subscript x Superscript 2 Baseline k Subscript upper S Superscript 2 EndMatrix EndLayout (B.80)

Besides the off diagonals the equation corresponds also to the result from the blocked forces cross correlation (B.76). Thus, the radiation stiffness including both in-plane waves can be used for the calculation of the cross correlation function from the diffuse field reciprocity.

B.3 Conversion Formulas of Transfer Matrix

The transfer matrix method is similar to the two pole theory in electronics. In the application of this theory, there are many different representations of the same system by different matrices. In this book the typical and most used cases are the transfer matrix and the dynamic stiffness matrix. Thus, the most important conversion formulas and some derivations are given.

B.3.1 Derivation of Stiffness Matrix from Transfer Matrix

The stiffness matrix of the noise control treatment can be calculated from the transfer matrix of the infinite layer (9.96)

StartLayout 1st Row 1st Column StartBinomialOrMatrix bold-italic p 1 left-parenthesis k Subscript x Baseline right-parenthesis Choose bold-italic v Subscript z Baseline Subscript 1 Baseline left-parenthesis k Subscript x Baseline right-parenthesis EndBinomialOrMatrix 2nd Column equals Start 2 By 2 Matrix 1st Row 1st Column upper T 11 left-parenthesis k Subscript x Baseline right-parenthesis 2nd Column upper T 12 left-parenthesis k Subscript x Baseline right-parenthesis 2nd Row 1st Column upper T 21 left-parenthesis k Subscript x Baseline right-parenthesis 2nd Column upper T 22 left-parenthesis k Subscript x Baseline right-parenthesis EndMatrix StartBinomialOrMatrix bold-italic p prime 2 left-parenthesis k Subscript x Baseline right-parenthesis Choose bold-italic v Subscript z Baseline Subscript 1 Baseline left-parenthesis k Subscript x Baseline right-parenthesis EndBinomialOrMatrix equals StartBinomialOrMatrix minus bold-italic p 2 left-parenthesis k Subscript x Baseline right-parenthesis Choose bold-italic v Subscript z Baseline Subscript 1 Baseline left-parenthesis k Subscript x Baseline right-parenthesis EndBinomialOrMatrix EndLayout

due to the discussions in section 9.1.1. Reordering the variables links the transfer matrix to the impedance matrix by:

StartLayout 1st Row 1st Column StartFraction 1 Over bold-italic upper T 21 EndFraction Start 2 By 2 Matrix 1st Row 1st Column bold-italic upper T 11 2nd Column minus det left-parenthesis Start 1 By 1 Matrix 1st Row bold-italic upper T EndMatrix right-parenthesis 2nd Row 1st Column negative 1 2nd Column bold-italic upper T 22 EndMatrix StartBinomialOrMatrix bold-italic v Subscript z Baseline Subscript 1 Choose bold-italic v Subscript z Baseline Subscript 2 EndBinomialOrMatrix 2nd Column equals StartBinomialOrMatrix bold-italic p 1 Choose bold-italic p 2 EndBinomialOrMatrix 3rd Column Start 2 By 2 Matrix 1st Row 1st Column bold-italic upper Z 11 2nd Column bold-italic upper Z 12 2nd Row 1st Column bold-italic upper Z 12 2nd Column bold-italic upper Z 22 EndMatrix 4th Column equals StartFraction 1 Over bold-italic upper T 21 EndFraction Start 2 By 2 Matrix 1st Row 1st Column bold-italic upper T 11 2nd Column minus det left-parenthesis Start 1 By 1 Matrix 1st Row bold-italic upper T EndMatrix right-parenthesis 2nd Row 1st Column negative 1 2nd Column bold-italic upper T 22 EndMatrix EndLayout (B.81)

With vzi=jωui the final transformation to the stiffness matrix reads as:

Start 1 By 1 Matrix 1st Row bold-italic upper D double-prime EndMatrix Subscript upper T Baseline equals Start 2 By 2 Matrix 1st Row 1st Column bold-italic upper D double-prime 11 2nd Column bold-italic upper D double-prime 12 2nd Row 1st Column bold-italic upper D double-prime 12 2nd Column bold-italic upper D double-prime 22 EndMatrix Subscript upper T Baseline equals StartFraction j omega Over bold-italic upper T 21 EndFraction Start 2 By 2 Matrix 1st Row 1st Column bold-italic upper T 11 2nd Column minus det left-parenthesis Start 1 By 1 Matrix 1st Row bold-italic upper T EndMatrix right-parenthesis 2nd Row 1st Column negative 1 2nd Column bold-italic upper T 22 EndMatrix (B.82)

Bibliography

  1. R. S. Langley and P. J. Shorter. The wave transmission coefficients and coupling loss factors of point connected structures. The Journal of the Acoustical Society of America, 113(4): 1947–1964, 2003.
  2. R.S. Langley and K.H. Heron. Elastic wave transmission through plate/beam junctions. Journal of Sound and Vibration, 143(2): 241–253, December 1990. ISSN 0022460X.

Notes

  1. 1 Keep in mind that for all quantities, the figures for the relevant plate must be chosen. For better readability the subsystem and wave indexing are not used in all equations.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset