7.3.3 Fundamental Jacobian Entry Formulas

Figure 7.9 shows a typical i bus of an n-bus system. This i bus is connected to three other buses m, k, and l. The load connected to bus i demands a complex power Sload,i.

f07-09-9780128007822
Figure 7.9 Definition of load and line apparent powers as well as line currents.

The total complex (apparent) power leaving bus i via the lines to buses k, l, m is

Slines,i=V˜i[I˜k+I˜l+I˜m],

si238_e  (7-65)

where* denotes the complex conjugate and ij are the line admittances:

Slines,i=V˜i[(V˜iV˜k)y˜ki+(V˜iV˜l)y˜li+(V˜iV˜m)y˜mi)],

si239_e  (7-66)

or

Slines,i=V˜i[V˜i(y˜ki+y˜li+y˜mi)y˜kiV˜ky˜liV˜ly˜miV˜m].

si240_e  (7-67)

With the entries of the admittance matrix

yii=(Y¯¯¯bus)ii=y˜ki+y˜li+y˜mi,yki=(Y¯¯¯bus)ki=y˜ki,yli=(Y¯¯¯bus)li=y˜li,ymi=(Y¯¯¯bus)mi=y˜mi,

si241_e

it follows

Slines,i=[(Y¯¯¯bus)iiV˜i+(Y¯¯¯bus)kiV˜k+(Y¯¯¯bus)liV˜l+(Y¯¯¯bus)miV˜m]*V˜i.

si242_e  (7-68)

Using the notation

V¯¯¯bus=V˜iV˜kV˜lV˜m,

si243_e  (7-69)

one can write in a condensed manner

Slines,i=[(rowiofY¯¯¯bus)V¯¯¯bus]V˜i.

si244_e  (7-70)

Therefore, for the PQ buses we have the mismatch powers

ΔWi=Sload,i+Slines,i

si245_e  (7-71)

=Sload,i+[(rowiofY¯¯¯bus)V¯¯¯bus]V˜i,

si246_e  (7-72)

where Sload,i is the load (demand) complex (apparent) power at bus i (Sload,i = Pi + jQi). Breaking the mismatch power ΔWi into a real part ΔPi and an imaginary part ΔQi, we have the real and reactive mismatch powers, respectively:

ΔPi=Pi+Real{[(rowiofY¯¯¯bus)V¯¯¯bus]V˜i}

si247_e  (7-73)

and

ΔQi=Qi+Imag{[(rowiofY¯¯¯bus)V¯¯¯bus]V˜i}

si248_e  (7-74)

with Pi and Qi being the real and reactive load (demand) powers at bus i.

Inspection of Matrix Expression (Eq. 7-70)

Let us inspect the expression V˜isi249_e[(row i of Y¯¯¯bussi250_e)V¯¯¯bussi251_e]* (with entries of admittance matrix in terms of line admittances, note minus signs):

V˜i[(rowiofY¯¯¯bus)V¯¯¯bus]=V˜i[V˜i(y˜ki+y˜li+y˜mi)y˜kiV˜ky˜liV˜ly˜miV˜m]

si252_e  (7-75)

with

V˜i=V˜iejδi=Viejδi,V˜k=V˜kejδk=Vkejδk,V˜l=V˜lejδl=Vlejδl,y˜ki=|y˜ki|ejθki.

si253_e  (7-76)

Therefore, for the complex (apparent) power between buses k and i one gets

V˜i[(y˜ki)V˜k]=V˜iejδi(|y˜ki|)ejθkiV˜kejδk=V˜iV˜k(|y˜ki|)ej(θkiδk+δi)=Fr,ki+Fi,ki

si254_e  (7-77)

Fr,ki=ViVk(|y˜ki|)cos(θkiδk+δi),

si255_e  (7-78)

and

Fi,ki=ViVk(|y˜ki|)sin(θkiδk+δi)

si256_e  (7-79)

or for all buses connected to bus i,

ΔPi=Pi+Fr,i=Pi+j=1nyijVjVicos(θijδj+δi)

si257_e  (7-80)

and

ΔQi=Qi+Fi,i=Qi+j=1nyijVjVisin(θijδj+δi),

si258_e  (7-81)

where yij and θij are the magnitude and the phase angle of the (i,j)th entry of the admittance matrix, respectively, and Vj = |V˜jsi259_e| and δj are the voltage rms magnitude and phase angle at bus j.

The Jacobian matrix is defined as

J¯¯=ΔP2δ2ΔQ2δ2ΔPnδ2ΔQnδ2ΔP2V2ΔQ2V2ΔPnV2ΔQnV2ΔP2δnΔQ2δnΔPnδnΔQnδnΔP2VnΔQ2VnΔPnVnΔQnVn,

si260_e  (7-82a)

where

The entries of the Jacobian are

ΔPiδi=j=1jinyijViVjsin(δiδjθij).

si261_e  (7-82b)

ΔPiδk=yikViVksin(δiδkθik)ki.

si262_e  (7-82c)

(Note that the negative sign cancels with negative sign due to derivative of –δk).

ΔPiVi=j=1jinyijVjcos(δiδjθij)+2Viyiicos(θii).

si263_e  (7-82d)

ΔPiVk=yikVicos(δiδkθik)ki.

si264_e  (7-82e)

ΔQiδi=j=1jinyijViVjcos(δiδjθij).

si265_e  (7-82f)

ΔQiδk=yikViVkcos(δiδkθik)ki.

si266_e  (7-82g)

ΔQiVi=j=1jinyijVjsin(δiδjθij)+2Viyiisin(θii).

si267_e  (7-82h)

ΔQiVk=yikVisin(δiδkθik)ki.

si268_e  (7-82i)

7.3.4 Newton–Raphson Power Flow Algorithm

Based on the equations given, the conventional fundamental power flow algorithm is the computation of the bus voltage vector for a given system configuration and linear loads. The Newton–Raphson approach (Eq. 7-64) will be used to force the mismatch power to zero (Eq. 7-57). The iterative solution procedure for the fundamental Newton–Raphson power flow algorithm is as follows (Fig. 7.10):

f07-10-9780128007822
Figure 7.10 Fundamental Newton–Raphson power flow algorithm.

 Step 1: Construct the admittance matrix Y¯¯¯bussi269_e (Eq. 7-41).

 Step 2: Make an initial guess for x¯si270_e (e.g., 1.0 pu volts and zero radians for all bus voltages, Eq. 7-42).

 Step 3: Evaluate mismatch power (ΔW¯¯¯¯(x¯)si271_e, Eq. 7-56). If it is small enough, then stop.

 Step 4: Establish Jacobian J¯¯si272_e (Eqs. 7-30 and 7-82) and calculate Δx¯ξsi273_e (Eq. 7-62) using either matrix inversion (for problems with a few buses) or upper (lower) triangular factorization combined with backward/forward substitution.

 Step 5: Update the bus vector voltage (Eq. 7-63) and go to Step 3.

It is recommended to use upper (lower) triangular factorization combined with backward/forward substitutions rather than matrix inversion in computing the solution because an iterative method is used where the coefficient matrix is updated from iteration to iteration.

7.3.5 Application Example 7.8: Computation of Fundamental Admittance Matrix

A simple (few buses) power system (Fig. E7.8.1) is used to illustrate in detail the Newton–Raphson load flow analysis. All impedances are in pu and the base apparent power is Sbase = 1 kVA. Compute the fundamental admittance matrix for this system.

f07-23-9780128007822
Figure E7.8.1 Four-bus power systems with per unit (pu) line impedances.

Solution to Application Example 7.8

For this example y14 = –14, where 14 is the admittance between bus 1 and bus 4 and y14 is an entry of the bus admittance matrix Ybus. Note the minus sign.

y14=y˜14=10.01+j0.02=10.022361.1071rad=1±3.1415rad0.022361.1071rad=44.72pu2.034rad

si274_e

y12=y˜12=10.01+j0.01=10.014140.7854=1±3.1415rad0.014140.7854=70.72pu2.356rad

si275_e

y11={y˜14+y˜12}={44.72cos(2.034)+70.72cos(2.356)+j[44.72sin(2.034)+70.72sin(2.356)]}={19.9849.997+j[40.008+50.02]}=(69.98j90.03)=114.03pu0.910rad

si276_e

y13=y˜13=0si277_e (because there is no direct line between buses 1 and 3)

y23=y˜23=10.02+j0.08=1±3.1415rad0.0824621.3258rad=12.127pu1.816rad

si278_e

y24=y˜42=0

si279_e

y34=y˜34=10.01+j0.02=1±3.1415rad0.022361.1071rad=44.72pu2.034rad

si280_e

y22=(y˜12+y˜23)={70.72cos(2.356)+12.127cos(1.816)+j(70.72sin(2.356)+12.127sin(1.816)]}={49.9972.994+j(50.102+11.764)}={52.941+j61.862}=81.42pu0.863rad

si281_e

y33=(y˜23+y˜34)={12.127cos(1.816)+44.72cos(2.034)+j[12.127sin(1.8161)+44.72sin(2.034)]}={2.94419.982+j(11.764+4.008)}={22.93+j51.772}=56.62pu1.154

si282_e

y44=(y˜14+y˜34)={44.72cos(2.034)+44.72cos(2.034)+j(44.72sin(2.034)+44.72sin(2.034)]}={19.98219.982+j(40.008+40.008)}={39.964+j80.016}=89.44pu1.1076rad.

si283_e

The bus admittance matrix is now

Y¯¯¯bus=114.03pu0.910rad70.72pu2.356rad044.72pu2.034rad70.72pu2.356rad81.42pu0.863rad12.127pu1.816rad0012.127pu1.816rad56.62pu1.154rad44.72pu2.034rad44.72pu2.034rad044.72pu2.034rad89.44pu1.1076rad.

si284_e

Note that Y¯¯¯bussi285_e is singular; that is, (Y¯¯¯bus)1si286_e cannot be found, because there is no admittance connected to the ground bus. This is unimportant for the Newton-Raphson approach because for forming of the Jacobian the entries of Y¯¯¯bussi287_e are used and Y¯¯¯bussi288_e is not inverted.

Comment about Singularity

 Considering

[I¯bus]=[Y¯¯¯bus]1[V¯¯¯bus],

si289_e

without any connection (admittance) from any bus to ground (Fig. 7.11), Y¯¯¯1bussi290_e is singular. However, if Y¯¯¯bussi291_e contains load information (admittance to ground) then it will not be singular.

f07-11-9780128007822
Figure 7.11 No connection to ground results in singular admittance matrix.

 Considering

[Δx¯]=[J¯¯]1[ΔW¯¯¯¯],

si292_e

if [J¯¯si293_e] contains load information (P3, Q3, Fig. 7.12), then [J¯¯si294_e] is not singular.

f07-12-9780128007822
Figure 7.12 PQ bus (bus 3) results in nonsingular Jacobian and load flow problem has a well-defined solution because the inverse of J¯si1_e exists, although Y¯¯¯1bussi2_e is singular.

7.3.6 Application Example 7.9: Evaluation of Fundamental Mismatch Vector

For the system of Fig. E7.8.1, assume bus 1 is the swing bus (δ1 = 0 and |V˜1si295_e| = 1.0 pu). Then we can make an initial guess for bus voltage vector x¯0si296_e = (δ2, |V˜2si297_e|, δ3, |V˜3si298_e|, δ4, |V˜4si299_e|)t = (0, 1, 0, 1, 0, 1)t. Note, the superscript 0 means initial guess. Compute the mismatch power vector for this initial condition.

Solution to Application Example 7.9

X¯¯¯o=(δ2,V˜2,δ3,V˜3,δ4,V˜4)t=(0,1,0,1,0,1)t

si300_e

ΔW¯¯¯¯0=(P2+Fr,2,Q2+Fi,2,P3+Fr,3,Q3+Fi,3,P4+Fr,4,Q4+Fi,4)t

si301_e

ΔP2=P2+Fr,2=P2+j=14y2jVjV2cos(θ2jδj+δ2)=P2+y21V1V2cos(θ21δ1+δ2)+y22V2V2cos(θ22δ2+δ2)+y23V3V2cos(θ23δ3+δ2)+y24V4V2cos(θ24δ4+δ2)

si302_e

ΔP2=P2+Fr,2=0.10+{70.7211cos(2.3560+0)+81.4211cos(0.8630+0)+12.12711cos(1.8160+0)+0}=0.1049.996+52.9362.942=0.0978

si303_e

ΔQ2=Q2+Fi,2=Q2+4j=1y2jVjV2sin(θ2jδj+δ2)=Q2+y21V1V2sin(θ21δ1+δ2)+y22V2V2sin(θ22δ2+δ2)+y23V3V2sin(θ23δ3+δ2)+y24V4V2sin(θ24δ4+δ2)

si304_e

ΔQ2=Q2+Fi,2=0.10+{70.721sin(2.3560+0)+81.421sin(0.8630+0)+12.12711sin(1.8160+0)+0}=0.1050.016+61.8611.57=0.374

si305_e

ΔP3=P3+Fr,3=P3+y31V1V3cos(θ31δ1+δ3)+y32V2V3cos(θ32δ2+δ3)+y33V3V3cos(θ33δ3+δ3)+y34V4V3cos(θ34δ4+δ3)

si306_e

ΔP3=P3+Fr,3=0.0+0.0+{12.12711cos(1.8160+0)+56.6211cos(1.1540+0)+44.7211cos(2.0340+0)}=0.0+0.02.944+22.9219.98=0.0056

si307_e

ΔQ3=Q3+Fi,3=Q3+y31V1V3sin(θ31δ1+δ3)+y32V2V3sin(θ32δ2+δ3)+y33V3V3sin(θ33δ3+δ3)+y34V4V3sin(θ34δ4+δ3)

si308_e

ΔQ3=Q3+Fi,3=0.0+0.0+{12.12711sin(1.8160+0)+56.6211sin(1.1540+0)+44.7211sin(2.0340+0)}=0.0+0.011.764+51.7740.008=0.00166

si309_e

ΔP4=P4+Fr,4=P4+y41V1V4cos(θ41δ1+δ4)+y42V2V4cos(θ42δ2+δ4)+y43V3V4cos(θ43δ3+δ4)+y44V4V4cos(θ44δ4+δ4)

si310_e

ΔP4=P4+Fr,4=0.25+{44.7211cos(2.0340+0)+0+44.7211cos(2.0340+0)+89.4411cos(1.10760+0)}=0.2519.98+019.98+39.96=0.2527

si311_e

ΔQ4=Q4+Fi,4=Q4+y41V1V4sin(θ41δ1+δ4)+y42V2V4sin(θ42δ2+δ4)+y43V3V4sin(θ43δ3+δ4)+y44V4V4sin(θ44δ4+δ4)

si312_e

ΔQ4=Q4+Fi,4=0.1+{44.7211sin(2.0340+0)+0+44.7211sin(2.0340+0)+89.4411sin(1.10760+0)}=0.140.0076+040.0076+80.016=0.1004.

si313_e

The mismatch power vector is now

ΔW¯0=(0.0978,0.374,0.0056,0.00166,0.2527,0.1004)t.

si314_e

7.3.7 Application Example 7.10: Evaluation of Fundamental Jacobian Matrix

For the system of Fig. E7.8.1, compute the Jacobian matrix.

Solution to Application Example 7.10

J11=ΔP2δ2=4j=12y2jV2Vjsin(δ2δjθ2j)=y21V2V1sin(δ2δ1θ21)y23V2V3sin(δ2δ3θ23)y24V2V4sin(δ2δ4θ24)

si315_e

J11=ΔP2δ2=70.7211sin(002.356)12.12711sin(001.816)0=61.68

si316_e

J12=ΔP2V2=4j=12y2jVjcos(δ2δjθ2j)+2y22V2cos(θ22)=y21V1cos(δ2δ1θ21)+y23V3cos(δ2δ3θ23)+y24V4cos(δ2δ4θ24)+2V2y22cos(θ22)

si317_e

J12=ΔP2V2=70.721cos(002.356)+12.1271cos(001.816)+0+2181.42cos(0.863)=49.9962.944+0+105.872=52.932

si318_e

J13=ΔP2δ3=y23V1V3sin(δ2δ3θ23)=12.12711sin(001.816)=11.764

si319_e

J14=ΔP2V3=y23V2cos(δ2δ3θ23)=12.1271cos(001.816)=2.944

si320_e

J15=ΔP2δ4=y24V1V5sin(δ2δ5θ25)=0

si321_e

J16=ΔP2V4=y24V2cos(δ2δ4θ24)=0

si322_e

J21=ΔQ2δ2=j=124y2jV2Vjcos(δ2δjθ2j)=y21V2V1cos(δ2δ1θ21)+y23V2V3cos(δ2δ3θ23)+y24V2V4cos(δ2δ4θ24)

si323_e

J21=ΔQ2δ2=70.7211cos(002.3560)+12.12711cos(001.816)+0=49.9962.944+0=52.94

si324_e

J22=ΔQ2V2=j=124y2jVjsin(δ2δjθ2j)+2V2y22sin(θ22)=y21V1sin(δ2δ1θ21)+y23V3sin(δ2δ3θ23)+y24V4sin(δ2δ4θ24)+2V2y22sin(θ22)

si325_e

J22=ΔQ2V2=70.721sin(002.356)+12.1271sin(001.816)+0+2181.42sin(0.863)=50.01611.764+0+123.725=61.945

si326_e

J23=ΔQ2δ3=y23V2V3cos(δ2δ3θ23)=12.12711cos(001.816)=2.944

si327_e

J24=ΔQ2V3=y23V2sin(δ2δ3θ23)=12.1271sin(001.816)=11.764

si328_e

J25=ΔQ2δ4=y24V2V4cos(δ2δ4θ24)=0

si329_e

J26=ΔQ2V4=y24V2sin(δ2δ4θ24)=0

si330_e

J31=ΔP3δ2=y32V3V2sin(δ3δ2θ32)=12.12711sin(001.816)=11.764

si331_e

J32=ΔP3V2=y32V3cos(δ3δ2θ32)=12.1271cos(001.816)=2.944

si332_e

J33=ΔP3δ3=j=134y3jV3Vjsin(δ3δjθ3j)

si333_e

J33=ΔP3δ3=y31V3V1sin(δ3δ1θ31)y32V3V2sin(δ3δ2θ32)y34V3V4sin(δ3δ4θ34)=012.12711sin(001.816)44.7211sin(002.034)=51.772

si334_e

J34=ΔP3V3=j=134y3jVjcos(δ3δjθ3j)+2V3y33cos(θ33)=y31V1cos(δ3δ1θ31)+y32V2cos(δ3δ2θ32)+y34V4cos(δ3δ4θ34)+2V3y33cos(θ33)=0+12.1271cos(001.186)+44.721cos(002.034)+2156.62cos(1.154)=02.94419.982+45.843=22.917

si335_e

J35=ΔP3Δ4=y34V3V4sin(δ3δ4θ34)=44.7211sin(002.034)=40.0076

si336_e

J36=ΔP3V4=y34V3cos(δ3δ4θ34)=44.721cos(002.034)=19.98

si337_e

J41=ΔQ3δ2=y32V3V2cos(δ3δ2θ32)=12.12711cos(001.816)=2.944

si338_e

J42=ΔQ3V2=y32V3sin(δ3δ2θ32)=12.1271sin(001.816)=11.764

si339_e

J43=ΔQ3δ3=j=134y3jV3Vjcos(δ3δjθ3j)

si340_e

J43=ΔQ3δ3=y31V3V1cos(δ3δ1θ31)+y32V3V2cos(δ3δ2θ32)+y34V3V4cos(δ3δ4θ34)

si341_e

J43=ΔQ3δ3=0+12.12711cos(001.816)+44.7211cos(002.034)=2.94419.982=22.926

si342_e

J44=ΔQ3V3=j=134y3jVjsin(δ3δjθ3j)+2V3y33sin(θ33)=y31V1sin(δ3δ1θ31)+y32V2sin(δ3δ2θ32)+y34V4sin(δ3δ4θ34)+2V3y33sin(θ33)

si343_e

J44=ΔQ3V3=0+12.1271sin(001.816)+44.721sin(002.034)+2156.62sin(1.154)=11.76440.0076+103.546=51.773

si344_e

J45=ΔQ3δ4=y34V3V4cos(δ3δ4θ34)=44.7211cos(002.034)=19.982

si345_e

J46=ΔQ3V4=y34V3sin(δ3δ4θ34)=44.721sin(002.034)=40.0076

si346_e

J51=ΔP4δ2=y42V4V2sin(δ4δ2θ42)=0

si347_e

J52=ΔP4V2=y42V4cos(δ4δ2θ42)=0

si348_e

J53=ΔP4δ3=y43V4V3sin(δ4δ3θ43)=44.7211sin(002.034)=40.0076

si349_e

J54=ΔP4V3=y43V4cos(δ4δ3θ43)=44.721cos(002.034)=19.982

si350_e

J55=ΔP4δ4=j=144y4jV4Vjsin(δ4δjθ4j)=y41V4V1sin(δ4δ1θ41)y42V4V2sin(δ4δ2θ42)y43V4V3sin(δ4δ3θ43)

si351_e

J55=ΔP4δ4=44.7211sin(002.034)044.7211sin(002.034)=40.00760+40.0076=80.015

si352_e

J56=ΔP4V4=j=144y4jVjcos(δ4δjθ4j)+2V4y44cos(θ44)

si353_e

J56=ΔP4V4=y41V1cos(δ4δ1θ41)+y42V2cos(δ4δ2θ42)+y43V3cos(δ4δ3θ43)+2V4y44cos(θ44)

si354_e

J56=ΔP4V4=44.721cos(002.034)+0+44.721cos(002.034)+2189.44cos(1.1076)

si355_e

J56=ΔP4V4=19.98219.982+79.925=39.961

si356_e

J61=ΔQ4δ2=y42V4V2cos(δ4δ2θ42)=0

si357_e

J62=ΔQ4V2=y42V4sin(δ4δ2θ42)=0

si358_e

J63=ΔQ4δ3=y43V4V3cos(δ4δ3θ43)=44.7211cos(002.034)=19.982

si359_e

J64=ΔQ4V3=y43V4sin(δ4δ3θ43)=44.721sin(002.034)=40.0076

si360_e

J65=ΔQ4δ4=j=144y4jV4Vjcos(δ4δjθ4j)

si361_e

J65=ΔQ4δ4=y41V4V1cos(δ4δ1θ41)+y42V4V2cos(δ4δ2θ42)+y43V4V3cos(δ4δ3θ43)

si362_e

J65=ΔQ4δ4=44.7211cos(002.034)+0+44.7211cos(002.034)=19.98219.982=39.963

si363_e

J66=ΔQ4V4=j=144y4jVjsin(δ4δjθ4j)+2V4y44sin(θ44)

si364_e

J66=ΔQ4V4=y41V1sin(δ4δ1θ41)+y42V2sin(δ4δ2θ42)+y43V3sin(δ4δ3θ43)+V4y44sin(θ44)

si365_e

J66=ΔQ4V4=44.721sin(002.034)+0+44.721sin(002.034)+2189.44sin(1.1076)

si366_e

J66=ΔQ4V4=40.007640.0076+160.031=80.

si367_e

The Jacobian matrix is

J¯¯=J11J21J31J41J51J61J12J22J32J42J52J62J13J23J33J43J53J63J14J24J34J44J54J64J15J25J35J45J55J65J16J26J36J46J56J66

si368_e

J¯¯0=61.6852.9411.7642.9440052.93261.9452.94411.7640011.7642.94451.77222.92640.007619.9822.94411.76422.91751.77319.98240.00760040.007619.98280.01539.9630019.9840.007639.96180.

si369_e

7.3.8 Application Example 7.11: Calculation of the Inverse of Jacobian Matrix

Compute the inverse of the Jacobian matrix (evaluated in Application Example 7.10) using the adjoint and determinant.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset