CHAPTER 11
Project Quality Management In Practice

GEREE STREUN, PMP, CSQE, GVSOFTWARE SOLUTIONS, INC.

What do we mean by “quality management” on projects? Often, discussions of quality become confused when it is not clear whether we are referring to the quality of the process—the process of documenting and executing the project—or to the quality of the finished product. The Project Quality Management processes described in A Guide to the Project Management Body of Knowledge, Fourth Edition, address that confusion by including all the activities that determine quality standards, objectives, and responsibilities so that the project will satisfy the quality requirements and produce a product that meets quality standards. The Quality Management processes implement the quality management system through the procedures and processes of quality planning, quality assurance, and quality control. Quality Management facilitates continuous process improvement activities conducted throughout the project effort.

The quality management approach described in the PMBOK® Guide, Fourth Edition, is compatible with the other quality approaches.1 Quality processes should be used on all types of projects. The quality approach when building a house is different from that used when developing software for an embedded medical device. In either case, if quality requirements are not met, there could be a negative impact to both the customer and the company building the product. For instance, building a house without the proper architectural diagrams or building inspections can cause costly rework after the customer takes possession of the dwelling, which would leave the developer liable for damages. In the case of an embedded medical device, a patient may be harmed, thus leaving the developing company open for prosecution by the FDA and the legal system.

Quality has many different perspectives as meanings have evolved from different industries, organizations, and application areas. The ISO definition for quality is “the totality of characteristics of an entity that bear on its ability to satisfy stated and implied needs.”2 Additionally, quality can mean:

• Relative quality—the product or service compared to other products or services.

• Fitness for use—the product or service is able to be used.

• Fitness for purpose—the product or service will meet its intended purpose.

• Meets requirements—the product or service in relation to the customer’s requirements.

• Quality is inherent—quality cannot be tested in. The process must support designing in quality, not attempting to test it in at the end of the process.

Quality management processes, when properly implemented on a project, drive the project to advance a company’s market position:

imageA high-performing quality organization has process improvement initiatives that result in:

• Improving all processes in an organization.

• Lowering correction costs.

• Stopping recall costs.

• Recognizing the impact of implementing quality improvement objectives.

• Building a historical repository of lessons learned for future improvement.

imageUse the quality process to build in quality throughout the development process. This costs less than trying to test in quality during the verification phase, and costs much less than a product recall. Long-term costs can even include the loss of current and future customers.

imageKnow your customer’s expectations—what do they really want or need to satisfy their requirements. Keep in mind sometimes they will provide information that is more appropriately a proposed solution, an effective quality effort will strive to elicit the real need.

QUALITY’S TIE TO PROJECT MANAGEMENT

The focus for providing quality services or products has evolved over the years from something that is nice to have to a hard demand by customers for quality products. Customers are becoming more educated in their rights and are holding producers to a higher standard. Global competition has also resulted in a stronger emphasis on quality. A company’s position in the global market improves when a company increases quality by meeting customer requirements worldwide. The return on investment comes to the company when the quality equation is appropriately applied—the value of the outcome is greater than the sum of the inputs, thereby reducing overall costs. Quality efforts typically increase overall profitability by making sure the quality costs are less than the cost of delivering substandard product.

A project is defined as a series of processes by the Project Management Process Groups and it is important to continually improve project processes as the project management plan is executed.3 A skilled project manager recognizes that projects must involve a continuous improvement effort as part of the project tasks to be successful. The project manager develops the project management plan anticipating problems and developing solutions to achieve the required outcome. This guarantees that activities documented in the project management plan are executed to meet the organization and customer’s quality requirements. When planning a project and meeting the project’s quality requirements, the project manager must be skilled enough to consider multiple quality aspects:

• The interactions among all project processes provide a focus on quality aspects. The project manager must ensure the upfront analysis is thorough enough to identify any bottlenecks that will negatively impact process interactions during the project effort.

• The degrees of influence resulting from the conflicting project demands. For instance, will the resources needed on the project be overloaded and not readily available?

• The communication needs to maintain a project’s appropriate quality focus. The project manager should define what communication media will be used and the communication frequency required to track quality issues to resolution.

Shortcuts taken during initial project processes will lead to negative impact in both project and product quality and drive up the overall cost to the producing organization. For instance, the project initiation activities could be waived, or the project manager is assigned late in the project, or the project manager is never granted the proper authority to do the job. Another key shortcoming that hits a project is that product specifications are typically incomplete so it is very difficult to plan the complete effort and request needed resources.

Cost of quality is a concept that is often overlooked when planning the quality effort in a project. The term is used to reflect the total price of all efforts to achieve quality in a product or service. The calculations must also take into account the impact from delivering a “bad” product and any retrofit that may result. Key project decisions that impact the cost of quality come from either striving for “zero” defects—how much it will cost the project to achieve this high level of quality, versus achieving “good enough” quality—which may result in costly product recall or warranty claims. A project is temporary; however, the product may have a life of 20 years or more, which means investments in defect prevention should be compared against the life of the product to determine the possibility of an appropriate return on the quality investment. If the customer is dissatisfied as a result of an injury or by financial loss, the risk to future business is immense and total quality cost is potentially beyond measure for a company with unrealized future sales and negative market growth.

Quality planning requires the project manager to have the ability to anticipate situations and plan activities that resolve those situations. Including planned quality activities in the project management plan is critical, because any project activity that is not planned typically will not be done. Therefore it is essential to anticipate quality activities to achieve the defined quality criteria and build them into the plan very early in the process.

The quality management plan is a subset of the overall project management plan and addresses quality assurance and quality control, as components of the continuous process improvement effort within any project.4 It also includes activities to facilitate improving the overall process by planning activities for analyzing the processes to identify all non-value add activities and then removing them or modifying them.

Quality assurance is a series of umbrella activities for continuous process improvement. Project quality assurance activities are an essential aspect of building in quality rather than trying to test in quality at the end of the development life cycle. Quality assurance continually improves the process reducing waste, allowing processes to operate at increased levels of efficiency.

Quality audits of project activities ensure the project complies with project policies, processes and procedures. Correcting the noted deficiencies results in reduced quality costs and increases the likelihood of the customer accepting the product. Quality audits also confirm that implemented change requests, corrective actions, defect repairs, and preventative actions are correct. Process assessment is very similar to quality audits, but identifies inefficiencies in the process. Root cause analysis is a follow-on activity to both audits and assessments, which analyzes the identified problem, then determines one or more underlying causes, and lastly addresses that problem at an organizational level to prevent future occurrences.

A quality control department performs the monitoring and control required to ensure the project processes and the product comply with relevant quality standards. The project manager must have some knowledge of quality control techniques and tools, such as5:

A cause and effect diagram (Ishikawa diagrams or fishbone diagram) is a tool used to show how various factors are linked to identified problems or adverse effects. Figure 11-1 is an example of a cause and effect diagram.

Control charts are used to show if a process is stable or has performance that can be predicted. Effectively used control charts illustrate how a process behaves over time. By monitoring and graphing a process’s output over time, the chart will show if a process is within acceptable limits over that timeframe. Control charts can be used to monitor plan variances or other outputs to determine if the project management process is in control. Any process found to be outside the defined limits should be targeted for adjustment. Figure 11-2 shows such a control chart.

Pareto charts are histograms representing a distribution that is ordered by occurrence frequency. Each column represents a problem’s attributes. The column’s height represents the attribute weight or frequency. The distribution shape and width help identify the cause of problems in a process. The rank ordering guides corrective action, which is performed first on occurrences causing the most number of defects. Pareto diagrams are based on Pareto’s Law, often called the 80/20 principle, which means a low number of causes or issues (approximately 20%) produce the majority of the problems.

Image

FIGURE 11-1. CAUSE AND EFFECT DIAGRAM

Image

FIGURE 11-2. CONTROL CHART OF PROCESS PERFORMANCE

Statistical sampling is actually selecting a limited (80%) part of the population to test. Appropriate application statistical sampling often reduces receiving defective parts or output variation.

Inspections examine a project’s artifacts to determine conformance to standards and validate defect repairs. The results of an inspection include measurements and can be generated at any level in the process. Inspections are also used to ensure that processes are being followed as documented.

Quality improvement recommendations and audit findings are used to evolve the project process, the project management plan, and other project deliverables. The quality measurements are fed back to the project management processes to reevaluate and analyze project processes. Planned quality activities ensure a high degree of project and product success, which ensures a high return on investment for the effort invested by the production organization.

REFERENCES

1 Project Management Institute, A Guide to the Project Management Body of Knowledge, Fourth Edition, PMI, 2008: p. 179.

2 ISO 9000 Quality Management, Standards Compendium, Fifth Edition; ISO 8402:1994, Quality management and quality assurance—Vocabulary, published by International Organization for Standardization, 1994.

3 Project Management Institute, 2008, p. 63.

4 Ibid., p. 162.

5 Schulmeyer, G. Gordon & McManus, James I., Handbook of Software Quality Assurance, Second Edition, published by International Thomson Computer Press: 1996.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset