45
Bibliography
[1] Sebastian run. Toward robotic cars. Communications of the ACM, 53(4):99, 2010. DOI:
10.1145/1721654.1721679 1
[2] Chris Urmson and William Whittaker. Self-driving cars and the urban challenge. IEEE
Intelligent Systems, 23(2):66–68, 2008. DOI: 10.1109/mis.2008.34
[3] Umberto Montanaro, Shilp Dixit, Saber Fallah, Mehrdad Dianati, Alan Stevens,
David Oxtoby, and Alexandros Mouzakitis. Towards connected autonomous driv-
ing: Review of use-cases. Vehicle System Dynamics, pages 1–36, 2018. DOI:
10.1080/00423114.2018.1492142 1
[4] World Health Organization. Global status report on road safety, 2018. DOI:
10.1136/ip.2009.023697 1
[5] Santokh Singh. Critical reasons for crashes investigated in the National Motor Vehicle
Crash Causation Survey. National Highway Traffic Safety Administration, February 1–2,
2015. 1
[6] orsten Luettel, Michael Himmelsbach, and Hans Joachim Wuensche. Autonomous
ground vehicles—concepts and a path to the future. Proc. of the IEEE, 100 (Special Cen-
tennial Issue):1831–1839, 2012. DOI: 10.1109/jproc.2012.2189803 1
[7] William Payre, Julien Cestac, and Patricia Delhomme. Intention to use a fully automated
car: Attitudes and a priori acceptability. Transportation Research Part F: Traffic Psychology
and Behaviour, 27(PB):252–263, 2014. DOI: 10.1016/j.trf.2014.04.009
[8] Philip Ross. Robot, you can drive my car. IEEE Spectrum, 51(6), 2014. DOI:
10.1109/mspec.2014.6821623
[9] Department for Transport. Research on the impacts of connected and autonomous vehicles
(CAVs) on traffic flow, Summary Report, 2017. 1
[10] Kichun Jo, Junsoo Kim, Dongchul Kim, Chulhoon Jang, and Myoungho Sunwoo. De-
velopment of autonomous car—part I: Distributed system architecture and development
process. IEEE Transactions on Industrial Electronics, 61(12):7131–7140, 2014. DOI:
10.1109/tie.2014.2321342 1
46 BIBLIOGRAPHY
[11] Charles orpe, Martial Herbert, Takeo Kanade, and S. Shafter. Toward autonomous
driving: e CMU navlab. II. Architecture and systems. IEEE Expert, 6(4):44–52, 1991.
DOI: 10.1109/64.85920 1
[12] Ernest D. Dickmanns and Alfred Zapp. Autonomous high speed road vehicle guidance by
computer vision. IFAC Proceedings Volumes, 20(5):221–226, 1987. DOI: 10.1016/s1474-
6670(17)55320-3 1
[13] Sebastian run, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron,
James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann, Kenny
Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pascal Stang, Sven Strohband, Cedric
Dupont, Lars-Erik Jendrossek, Christian Koelen, Charles Markey, Carlo Rummel, Joe
van Niekerk, Eric Jensen, Philippe Alessandrini, Gary Bradski, Bob Davies, Scott Et-
tinger, Adrian Kaehler, Ara Nefian, Pamela Mahoney. Stanley: e robot that won
the DARPA grand challenge. Journal of Field Robotics, 23(9):661–692, 2006. DOI:
10.1007/978-3-540-73429-1_1 1
[14] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. e DARPA Urban Challenge: Au-
tonomous Vehicles in City Traffic, vol. 56, Springer, 2009. DOI: 10.1007/978-3-642-03991-
1 1
[15] SAE International. Taxonomy and definitions for terms related to driving automa-
tion systems for on-road motor vehicles. SAE International, ( J3016), 2018. DOI:
10.4271/J3016_201609 1
[16] Aldo Sorniotti, Phil Barber, and Stefano De Pinto. Path tracking for automated driving:
A tutorial on control system formulations and ongoing research. In Automated Driving,
pages 71–140, Springer, 2017. DOI: 10.1007/978-3-319-31895-0_5 2
[17] Tuan Le-Anh and M. B. M. De Koster. A review of design and control of automated
guided vehicle systems. European Journal of Operational Research, 171(1):1–23, 2006. DOI:
10.1016/j.ejor.2005.01.036 2
[18] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli. A
survey of motion planning and control techniques for self-driving urban vehicles. IEEE
Transactions on Intelligent Vehicles, 1(1):33–55, 2016. DOI: 10.1109/tiv.2016.2578706
[19] Michel Pasquier, Chai Quek, and Mary Toh. Fuzzylot: A novel self-organising fuzzy-
neural rule-based pilot system for automated vehicles. Neural Networks, 14(8):1099–1112,
2001. DOI: 10.1016/s0893-6080(01)00048-x 2
[20] Markus Kuderer, Shilpa Gulati, and Wolfram Burgard. Learning driving styles for au-
tonomous vehicles from demonstration. Proc. of the IEEE International Conference on
BIBLIOGRAPHY 47
Robotics and Automation, pages 2641–2646, June 2015. DOI: 10.1109/icra.2015.7139555
3
[21] David Silver, J. Andrew Bagnell, and Anthony Stentz. Learning autonomous driving
styles and maneuvers from expert demonstration. In Experimental Robotics, pages 371–
386, Springer, Heidelberg, 2013. DOI: 10.1007/978-3-319-00065-7_26 3
[22] Dongbin Zhao, Bin Wang, and Derong Liu. A supervised actor-critic approach for adap-
tive cruise control. Soft Computing, 17(11):2089–2099, 2013. DOI: 10.1007/s00500-013-
1110-y 3, 20, 21
[23] C. Desjardins and B. Chaib-draa. Cooperative adaptive cruise control: A reinforcement
learning approach. IEEE Transactions on Intelligent Transportation Systems, 12(4):1248–
1260, 2011. DOI: 10.1109/tits.2011.2157145 3, 18, 21
[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing Systems,
pages 1097–1105, 2012. DOI: 10.1145/3065386 3, 5, 9
[25] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-Rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath,
Brian Kingsbury. Deep neural networks for acoustic modeling in speech recognition: e
shared views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.
DOI: 10.1109/msp.2012.2205597 5
[26] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems, pages 3104–3112, 2014.
3, 5
[27] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. Planning and decision-making
for autonomous vehicles. Annual Review of Control, Robotics, and Autonomous Systems,
1:187–210, 2018. DOI: 10.1146/annurev-control-060117-105157 3
[28] i oa Mac, Cosmin Copot, Duc Trung Tran, and Robin De Keyser. Heuristic ap-
proaches in robot path planning: A survey. Robotics and Autonomous Systems, 86:13–28,
2016. DOI: 10.1016/j.robot.2016.08.001
[29] Sandor M. Veres, Levente Molnar, Nick K. Lincoln, and Colin P. Morice. Autonomous
vehicle control systems—a review of decision making. Proc. of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering, 225(2):155–195, 2011. DOI:
10.1177/2041304110394727 3
[30] Hao Ye and Geoffrey Ye Li. Deep reinforcement learning for resource allocation in v2v
communications. In IEEE International Conference on Communications (ICC), pages 1–6,
2018. DOI: 10.1109/icc.2018.8422586 3
48 BIBLIOGRAPHY
[31] Xianfu Chen, Celimuge Wu, Honggang Zhang, Yan Zhang, Mehdi Bennis, and Heli
Vuojala. Decentralized deep reinforcement learning for delay-power tradeoff in vehicular
communications. ArXiv Preprint ArXiv:1906.00625, 2019. 3
[32] Hao Zhu, Ka-Veng Yuen, Lyudmila Mihaylova, and Henry Leung. Overview of environ-
ment perception for intelligent vehicles. IEEE Transactions on Intelligent Transportation
Systems, 18(10):2584–2601, 2017. DOI: 10.1109/tits.2017.2658662 3
[33] Jessica Van Brummelen, Marie O’Brien, Dominique Gruyer, and Homayoun Najjaran.
Autonomous vehicle perception: e technology of today and tomorrow. Transporta-
tion Research Part C: Emerging Technologies, vol. 89, pages 384–406, April 2018. DOI:
10.1016/j.trc.2018.02.012
[34] Joel Janai, Fatma Güney, Aseem Behl, and Andreas Geiger. Computer vision
for autonomous vehicles: Problems, datasets and state-of-the-art. ArXiv Preprint
ArXiv:1704.05519, 2017. 3
[35] Stephanie Lowry, Niko Sünderhauf, Paul Newman, John J. Leonard, David Cox, Peter
Corke, and Michael J. Milford. Visual place recognition: A survey. IEEE Transactions on
Robotics, 32(1):1–19, 2016. DOI: 10.1109/tro.2015.2496823 3
[36] Kishore Reddy Konda and Roland Memisevic. Learning visual odometry with a convolu-
tional network. In VISAPP (1), pages 486–490, 2015. DOI: 10.5220/0005299304860490
[37] Sampo Kuutti, Saber Fallah, Konstantinos Katsaros, Mehrdad Dianati, Francis Mccul-
lough, and Alexandros Mouzakitis. A survey of the state-of-the-art localization techniques
and their potentials for autonomous vehicle applications. IEEE Internet of ings Journal,
5(2):829–846, 2018. DOI: 10.1109/jiot.2018.2812300 3
[38] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Os-
trovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015. DOI: 10.1038/nature14236 3
[39] Itamar Arel, Derek C. Rose, and omas P. Karnowski. Deep machine learning-a new
frontier in artificial intelligence research [research frontier]. IEEE Computational Intelli-
gence Magazine, 5(4):13–18, 2010. DOI: 10.1109/mci.2010.938364
[40] Jun Tani, Masato Ito, and Yuuya Sugita. Self-organization of distributedly represented
multiple behavior schemata in a mirror system: Reviews of robot experiments using RN-
NPB. Neural Networks, 17(8–9):1273–1289, 2004. DOI: 10.1016/j.neunet.2004.05.007
[41] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015. DOI: 10.1038/nature14539
BIBLIOGRAPHY 49
[42] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015. DOI: 10.1016/j.neunet.2014.09.003 3
[43] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training
of deep visuomotor policies. e Journal of Machine Learning Research, 17(1):1334–1373,
2016. 3, 18
[44] Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning hand-eye
coordination for robotic grasping with large-scale data collection. In International Sympo-
sium on Experimental Robotics, pages 173–184, Springer, 2016. DOI: 10.1007/978-3-319-
50115-4_16 18
[45] Viktor Rausch, Andreas Hansen, Eugen Solowjow, Edwin Kreuzer, and J. Karl Hedrick.
Learning a deep neural net policy for end-to-end control of autonomous vehicles, American
Control Conference (ACC), pages 4914–4919, 2017. DOI: 10.23919/acc.2017.7963716 3,
16, 17
[46] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. Advances in op-
timizing recurrent networks. In Acoustics, Speech and Signal Processing (ICASSP), IEEE
International Conference on, pages 8624–8628, 2013. DOI: 10.1109/icassp.2013.6639349
7
[47] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recur-
rent neural networks. In International Conference on Machine Learning, pages 1310–1318,
2013.
[48] James Martens and Ilya Sutskever. Learning recurrent neural networks with hessian-free
optimization. In Proc. of the 28th International Conference on Machine Learning (ICML-11),
pages 1033–1040, Citeseer, 2011.
[49] Ilya Sutskever. Training recurrent neural networks. Ph.D. thesis, University of Toronto,
Toronto, Ontario, Canada, 2013.
[50] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance
of initialization and momentum in deep learning. In International Conference on Machine
Learning, pages 1139–1147, 2013. 7
[51] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997. DOI: 10.1162/neco.1997.9.8.1735 7
[52] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. ArXiv Preprint
ArXiv:1406.1078, 2014. DOI: 10.3115/v1/d14-1179 7
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset