BIBLIOGRAPHY 55
[112] Simon Hecker, Dengxin Dai, and Luc Van Gool. End-to-end learning of driving models
with surround-view cameras and route planners. In Proc. of the European Conference on
Computer Vision (ECCV), pages 435–453, 2018. DOI: 10.1007/978-3-030-01234-2_27
24, 26
[113] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen Koltun, and Alexey
Dosovitskiy. End-to-end driving via conditional imitation learning. In IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 1–9, 2018. DOI:
10.1109/icra.2018.8460487 24, 26
[114] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning to drive by
imitating the best and synthesizing the worst. ArXiv Preprint ArXiv:1812.03079, 2018.
24, 26, 28
[115] Markus Maurer, J. Christian Gerdes, Barbara Lenz, and Hermann Winner. Autonomous
Driving. Springer, Heidelberg, Berlin, 2016. DOI: 10.1007/978-3-662-48847-8 25
[116] European Commission. Cooperative intelligent transportation systems—research theme
analysis report, 2016. https://trimis.ec.europa.eu/sites/default/files/TRIP
_C-ITS_Report.pdf
[117] Saeed Asadi Bagloee, Madjid Tavana, Mohsen Asadi, and Tracey Oliver. Autonomous
vehicles: Challenges, opportunities, and future implications for transportation policies.
Journal of Modern Transportation, 24(4):284–303, 2016. DOI: 10.1007/s40534-016-0117-
3
[118] HERE Technologies. Consumer acceptance of autonomous vehicles, 2017.
https://www.here.com/sites/g/files/odxslz166/files/2018-11/Consumer
_Acceptance_of_Autonomous_Vehicles_white_paper_0.pdf
[119] Leopold Bosankic. How consumers’ perception of autonomous cars will influence
their adoption, 2017. https://medium.com/@leo_pold_b/how-consumers-percepti
on-of-autonomous-cars-will-influence-their-adoption-ba99e3f64e9a
[120] Hillary Abraham, Bryan Reimer, Bobbie Seppelt, Craig Fitzgerald, Bruce Mehler, and
Joseph F. Coughlin. Consumer interest in automation: Preliminary observations exploring
a year’s change, 2017. http://agelab.mit.edu/sites/default/files/MIT%20-%20N
EMPA%20White%20Paper%20FINAL.pdf 25
[121] Yoshua Bengio. Deep learning of representations: Looking forward. In International
Conference on Statistical Language and Speech Processing, pages 1–37, Springer, 2013. DOI:
10.1007/978-3-642-39593-2_1 25
56 BIBLIOGRAPHY
[122] Maryam M. Najafabadi, Flavio Villanustre, Taghi M. Khoshgoftaar, Naeem Seliya, Ran-
dall Wald, and Edin Muharemagic. Deep learning applications and challenges in big data
analytics. Journal of Big Data, 2(1):1, 2015. DOI: 10.1186/s40537-014-0007-7
[123] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis. ArXiv Preprint ArXiv:1802.09941, 2018. 25
[124] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray
Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic with experience replay.
ArXiv Preprint ArXiv:1611.01224, 2016. 25
[125] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13:281–305, 2012. 27
[126] Colin Raffel. Neural network hyperparameters, 2015. http://colinraffel.com/wiki
/neural_network_hyperparameters 27
[127] Yoshua Bengio. Practical recommendations for gradient-based training of deep archi-
tectures. In Neural Networks: Tricks of the Trade, pages 437–478, Springer, 2012. DOI:
10.1007/978-3-642-35289-8_26 27
[128] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient back-
prop. In Neural Networks: Tricks of the Trade, pages 9–50, Springer, 1998. DOI: 10.1007/3-
540-49430-8_2 27
[129] Y. LeCun. Generalization and network design strategies. Connectionism in Perspective,
pages 143–155, 1989. 27
[130] Nelson Morgan and Her Bourlard. Generalization and parameter estimation in
feedforward nets: Some experiments. Advances in Neural Information Processing Systems,
pages 630–637, 1989. 27
[131] omas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A
survey. Journal of Machine Learning Research, 20(55):1–21, 2019. DOI: 10.1007/978-3-
030-05318-5_3 27
[132] Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Automatic Machine
Learning: Methods, Systems, Challenges, pages 3–38, Springer, 2018. http://automl.org
/book DOI: 10.1007/978-3-030-05318-5_1
[133] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing Systems (NIPS),
pages 2546–2554, 2011.
BIBLIOGRAPHY 57
[134] Manoj Kumar, George E. Dahl, Vijay Vasudevan, and Mohammad Norouzi. Parallel
architecture and hyperparameter search via successive halving and classification. ArXiv
Preprint ArXiv:1805.10255, 2018.
[135] Tatsunori B. Hashimoto, Steve Yadlowsky, and John C. Duchi. Derivative free opti-
mization via repeated classification. ArXiv Preprint ArXiv:1804.03761, 2018. 27
[136] Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward trans-
formations: eory and application to reward shaping. 16th International Conference on
Machine Learning, 3:278–287, 1999. 27
[137] A. D. Laud. eory and application of reward shaping in reinforcement learning. Ph.D.
thesis, University of Illinois, 2004. 27
[138] Kober, Jens J., Bagnell, Andrew, Peters, Jan. Reinforcement learning in robotics:
A survey. International Journal of Robotics Research, 32(11):1238–1274, 2013. DOI:
10.1177/0278364913495721 27
[139] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan
Mané. Concrete problems in AI safety. ArXiv Preprint ArXiv:1606.06565, 2016. 27, 29
[140] Nidhi Kalra and Susan M. Paddock. Driving to safety: How many miles of driving would
it take to demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy
and Practice, 94:182–193, 2016. DOI: 10.1016/j.tra.2016.09.010 27, 31
[141] Simon Burton, Lydia Gauerhof, and Christian Heinzemann. Making the case for safety
of machine learning in highly automated driving. In International Conference on Computer
Safety, Reliability, and Security, pages 5–16, Springer, 2017. DOI: 10.1007/978-3-319-
66284-8_1 27, 31, 38, 40
[142] Andrew Y. Ng. Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In
Proc. of the 21st International Conference on Machine Learning, page 78, ACM, 2004. DOI:
10.1145/1015330.1015435 28
[143] Paul Merolla, Rathinakumar Appuswamy, John Arthur, Steve K. Esser, and Dharmendra
Modha. Deep neural networks are robust to weight binarization and other non-linear
distortions. ArXiv Preprint ArXiv:1606.01981, 2016.
[144] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training
deep neural networks with binary weights during propagations. In Advances in Neural
Information Processing Systems, pages 3123–3131, 2015.
[145] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Jour-
nal of Machine Learning Research, 15:1929–1958, 2014.
58 BIBLIOGRAPHY
[146] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R.
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detec-
tors. ArXiv Preprint ArXiv:1207.0580, 2012. 28
[147] Luke Ng, Christopher M. Clark, and Jan P. Huissoon. Reinforcement learning of adap-
tive longitudinal vehicle control for dynamic collaborative driving. In IEEE Intelligent
Vehicles Symposium, Proceedings, pages 907–912, 2008. DOI: 10.1109/ivs.2008.4621222
28
[148] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. Domain randomization for transferring deep neural networks from simulation to
the real world. In Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference
on, pages 23–30, 2017. DOI: 10.1109/iros.2017.8202133 28
[149] Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single
real image. ArXiv Preprint ArXiv:1611.04201, 2016. DOI: 10.15607/rss.2017.xiii.034
[150] Stephen James, Andrew J. Davison, and Edward Johns. Transferring end-to-end vi-
suomotor control from simulation to real world for a multi-stage task. ArXiv Preprint
ArXiv:1707.02267, 2017. 28
[151] Andrei A. Rusu, Matej Vecerik, omas Rothörl, Nicolas Heess, Razvan Pascanu, and
Raia Hadsell. Sim-to-real robot learning from pixels with progressive nets. ArXiv Preprint
ArXiv:1610.04286, 2016. 28
[152] Ali Ghadirzadeh, Atsuto Maki, Danica Kragic, and Mårten Björkman. Deep
predictive policy training using reinforcement learning. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2351–2358, 2017. DOI:
10.1109/iros.2017.8206046
[153] Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learn-
ing invariant feature spaces to transfer skills with reinforcement learning. ArXiv Preprint
ArXiv:1703.02949, 2017.
[154] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In Advances in Neural Information Processing Systems,
pages 3320–3328, 2014. 28
[155] Pieter Abbeel, Morgan Quigley, and Andrew Y. Ng. Using inaccurate models in re-
inforcement learning. In Proc. of the 23rd International Conference on Machine Learning,
pages 1–8, ACM, 2006. DOI: 10.1145/1143844.1143845 28
[156] Mark Cutler, omas J. Walsh, and Jonathan P. How. Reinforcement learning with
multi-fidelity simulators. In IEEE International Conference on Robotics and Automation
(ICRA), pages 3888–3895, 2014. DOI: 10.1109/icra.2014.6907423
BIBLIOGRAPHY 59
[157] Jur Van Den Berg, Stephen Miller, Daniel Duckworth, Humphrey Hu, Andrew Wan,
Xiao-Yu Fu, Ken Goldberg, and Pieter Abbeel. Superhuman performance of surgi-
cal tasks by robots using iterative learning from human-guided demonstrations. In
IEEE International Conference on Robotics and Automation, pages 2074–2081, 2010. DOI:
10.1109/robot.2010.5509621 28
[158] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,
A. Sendonaris, G. Dulac-Arnold, et al. Learning from demonstrations for real world
reinforcement learning. ArXiv, 2017. 28
[159] Davide Castelvecchi. Can we open the black box of AI? Nature News, 538(7623):20,
2016. DOI: 10.1038/538020a 28, 31
[160] Perry Van Wesel and Alwyn E. Goodloe. Challenges in the verification of reinforcement
learning algorithms. Technical report, NASA, 2017. 29, 39
[161] International Organization for Standardization. ISO 26262: Road vehicles-functional
safety. International Standard ISO/FDIS, 2011. 31
[162] Xiaodong Zhang, Matthew Clark, Kudip Rattan, and Jonathan Muse. Controller
verification in adaptive learning systems towards trusted autonomy. In Proc. of the
ACM/IEEE 6th International Conference on Cyber-Physical Systems, pages 31–40, 2015.
DOI: 10.1145/2735960.2735971 31
[163] Matthew Clark, Xenofon Koutsoukos, Joseph Porter, Ratnesh Kumar, George Pappas,
Oleg Sokolsky, Insup Lee, and Lee Pike. A study on run time assurance for complex cyber
physical systems. Technical Report, Air Force Research Lab Wright-Patterson AFB, OH,
Aerospace Systems DIR, 2013. DOI: 10.21236/ada585474 33, 34
[164] Bojan Cukic. e need for verification and validation techniques for adaptive control
system. In Autonomous Decentralized Systems. Proc. of the 5th International Symposium on,
pages 297–298, IEEE, 2001. DOI: 10.1109/isads.2001.917431
[165] Stephen Jacklin, Johann Schumann, Pramod Gupta, Michael Richard, Kurt Guenther,
and Fola Soares. Development of advanced verification and validation procedures and tools
for the certification of learning systems in aerospace applications. In Infotech@ Aerospace,
page 6912, 2005. DOI: 10.2514/6.2005-6912
[166] Chris Wilkinson, Jonathan Lynch, and Raj Bharadwaj. Final report, regulatory consid-
erations for adaptive systems. National Aeronautics and Space Administration, Langley
Research Center, 2013. 31
[167] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In Proc. of the IEEE
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset