Bibliography

Bibliography

[1] Courant R, Hilbert D. Methods of Mathematical Physics. New York: John Wiley & Sons; 1953 vol. 1.

[2] Gurtin ME. An Introduction to Continuum Mechanics. San Diego: Elsevier Academic Press; 2003.

[3] Gurtin ME, Williams WO. On the Clausius-Duhem inequality. Zeit. Ang. Math. Phys. 1966;17(5):626–633.

[4] Liu I-S, Müller I. On the thermodynamics and thermostatics of fluids in electromagnetic fields. Arch. Ration. Mech. Anal. 1972;46(2):149–176.

[5] Hutter K. On thermodynamics and thermostatics of viscous thermoelastic solids in the electromagnetic fields. A Lagrangian formulation. Arch. Ration. Mech. Anal. 1975;58(4):339–368.

[6] Hutter K. A thermodynamic theory of fluids and solids in electromagnetic fields. Arch. Ration. Mech. Anal. 1977;64(3):269–298.

[7] Green AE, Naghdi PM. On thermodynamics and the nature of the second law. Proc. R. Soc. Lond. A. 1977;357(1690):253–270.

[8] Rajagopal KR, Srinivasa AR. Mechanics of the inelastic behavior of materials. Part II: Inelastic response. Int. J. Plasticity. 1998;14(10-11):969–995.

[9] Rajagopal KR, Srinivasa AR. On thermomechanical restrictions of continua. Proc. R. Soc. Lond. A. 2004;460(2042):631–651.

[10] Blatz PJ, Ko WL. Application of finite elastic theory to the deformation of rubbery materials. Trans. Soc. Rheol. 1962;6(1):223–251.

[11] Holzapfel GA. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Chichester: John Wiley & Sons; 2000.

[12] Levinson M, Burgess IW. A comparison of some simple constitutive relations for slightly compressible rubber-like materials. Int. J. Mech. Sci. 1971;13(6):563–572.

[13] Ogden RW. Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible rubberlike solids. Proc. R. Soc. Lond. A. 1972;328(1575):567–583.

[14] Anand L. A constitutive model for compressible elastomeric solids. Comput. Mech. 1996;18(5):339–355.

[15] Bischoff JE, Arruda EM, Grosh K. A new constitutive model for the compressibility of elastomers at finite deformations. Rub. Chem. Tech. 2001;74(4):541–559.

[16] Treloar LRG. The Physics of Rubber Elasticity. Oxford: Clarendon Press; 1975.

[17] Ogden RW. Non-Linear Elastic Deformations. Chichester: Ellis Horwood; 1984.

[18] Ogden RW. Elastic deformations of rubberlike solids. In: Hopkins HG, Sewell MJ, eds. Mechanics of Solids, The Rodney Hill 60th Anniversary Volume. Oxford: Pergamon Press; 1982:499–537.

[19] Boyce MC, Arruda EM. Constitutive models of rubber elasticity: a review. Rub. Chem. Tech. 2000;73(3):504–523.

[20] Bechtel SE, Rooney FJ, Wang Q. A thermodynamic definition of pressure for incompressible viscous fluids. Int. J. Eng. Sci. 2004;42(19-20):1987–1994.

[21] Bechtel SE, Rooney FJ, Forest MG. Internal constraint theories for the thermal expansion of viscous fluids. Int. J. Eng. Sci. 2004;42(1):43–64.

[22] Bechtel SE, Forest MG, Rooney FJ, Wang Q. Thermal expansion models of viscous fluids based on limits of free energy. Phys. Fluids. 2003;15(9):2681–2693.

[23] Mooney M. A theory of large elastic deformation. J. Appl. Phys. 1940;11(9):582–592.

[24] Rivlin RS. Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A. 1948;241(835):379–397.

[25] Rivlin RS. Large elastic deformations of isotropic materials. I. Fundamental concepts. Philos. Trans. R. Soc. Lond. A. 1948;240(822):459–490.

[26] Ogden RW. Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A. 1972;326(1567):565–584.

[27] Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids. 1993;41(2):389–412.

[28] Treloar LRG. The elasticity of a network of long-chain molecules—II. Trans. Faraday Soc. 1943;39:241–246.

[29] Anand L. Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids. 1986;34(3):293–304.

[30] Green AE, Naghdi PM. A unified procedure for construction of theories of deformable media. I. Classical continuum physics. Proc. R. Soc. Lond. A. 1995;448(1934):335–356.

[31] Green AE, Naghdi PM. A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A. 1991;432(1885):171–194.

[32] Hutter K, van de Ven AAF, Ursescu A. Electromagnetic Field Matter Interactions in Thermoelastic Solids and Viscous Fluids. Berlin: Springer-Verlag; 2006.

[33] Pao Y-H. Electromagnetic forces in deformable continua. In: Nemat-Nasser S, ed. New York: Pergamon Press; 209–305. Mechanics Today. 1978;vol. 4.

[34] Kovetz A. Electromagnetic Theory. Oxford: Oxford University Press; 2000.

[35] Kankanala SV, Triantafyllidis N. On finitely strained magnetorheological elastomers. J. Mech. Phys. Solids. 2004;52(12):2869–2908.

[36] Dorfmann A, Ogden RW. Some problems in nonlinear magnetoelasticity. Zeit. Ang. Math. Phys. 2005;56(4):718–745.

[37] Dorfmann A, Ogden RW. Nonlinear electroelastic deformations. J. Elast. 2006;82(2):99–127.

[38] Eringen AC, Maugin GA. Electrodynamics of Continua I: Foundations and Solid Media. New York: Springer-Verlag; 1990.

[39] Lorentz HA. The Theory of Electrons. second ed. New York: Dover; 2004.

[40] de Groot SR, Suttorp LG. Foundations of Electrodynamics. Amsterdam: North-Holland Publishing Company; 1972.

[41] Fano RM, Chu LJ, Adler RB. Electromagnetic Fields, Energy, and Forces. Cambridge: The MIT Press; 1968.

[42] Maxwell JC. A Treatise on Electricity and Magnetism. Oxford: Clarendon Press; 1873.

[43] Brown WF. Magnetoelastic Interactions. New York: Springer-Verlag; 1966.

[44] Green AE, Naghdi PM. Aspects of the second law of thermodynamics in the presence of electromagnetic effects. Quart. J. Mech. Appl. Math. 1984;37(2):179–193.

[45] Dorfmann A, Ogden RW. Magnetoelastic modelling of elastomers. Euro. J. Mech. A: Solids. 2003;22(4):497–507.

[46] Dorfmann A, Ogden RW. Nonlinear magnetoelastic deformations. Quart. J. Mech. Appl. Math. 2004;57(4):599–622.

[47] Dorfmann A, Ogden RW. Nonlinear magnetoelastic deformations of elastomers. Acta Mech. 2004;167(1-2):13–28.

[48] Dorfmann A, Ogden RW. Nonlinear electroelasticity. Acta Mech. 2005;174(3-4):167–183.

[49] Steigmann DJ. Equilibrium theory for magnetic elastomers and magnetoelastic membranes. Int. J. Non-Linear Mech. 2004;39(7):1193–1216.

[50] McMeeking RM, Landis CM. Electrostatic forces and stored energy for deformable dielectric materials. ASME J. Appl. Mech. 2005;72(4):581–590.

[51] McMeeking RM, Landis CM, Jimenez SMA. A principle of virtual work for combined electrostatic and mechanical loading of materials. Int. J. Non-Linear Mech. 2007;42(6):831–838.

[52] Vu DK, Steinmann P, Possart G. Numerical modelling of non-linear electroelasticity. Int. J. Numer. Meth. Eng. 2007;70(6):685–704.

[53] Voltairas PA, Fotiadis DI, Massalas CV. A theoretical study of the hyperelasticity of electro-gels. Proc. R. Soc. Lond. A. 2003;459(2037):2121–2130.

[54] Suo Z, Zhao X, Greene WH. A nonlinear field theory of deformable dielectrics. J. Mech. Phys. Solids. 2008;56(2):467–486.

[55] Zhao X, Suo Z. Electrostriction in elastic dielectrics undergoing large deformation. J. Appl. Phys. 2008;104(12):123530.

[56] Zhu J, Stoyanov H, Kofod G, Suo Z. Large deformation and electromechanical instability of a dielectric elastomer tube actuator. J. Appl. Phys. 2010;108(7):074113.

[57] Qin Z, Librescu L, Hasanyan D, Ambur DR. Magnetoelastic modeling of circular cylindrical shells immersed in a magnetic field. Part I: Magnetoelastic loads considering finite dimensional effects. Int. J. Eng. Sci. 2003;41(17):2005–2022.

[58] Qin Z, Hasanyan D, Librescu L, Ambur DR. Magnetoelastic modeling of circular cylindrical shells immersed in a magnetic field. Part II: Implications of finite dimensional effects on the free vibrations. Int. J. Eng. Sci. 2003;41(17):2023–2046.

[59] Richards AW, Odegard GM. Constitutive modeling of electrostrictive polymers using a hyperelasticity-based approach. ASME J. Appl. Mech. 2010;77(1):014502.

[60] Oates WS, Wang H, Sierakowski RL. Unusual field-coupled nonlinear continuum mechanics of smart materials. J. Intel. Mater. Syst. Struct. 2012;23(5):487–504.

[61] Callen HB. Thermodynamics and an Introduction to Thermostatistics. second ed. New York: Wiley; 1985.

[62] Santapuri S, Lowe RL, Bechtel SE, Dapino MJ. Thermodynamic modeling of fully coupled finite-deformation thermo-electro-magneto-mechanical behavior for multifunctional applications. Int. J. Eng. Sci. 2013;72:117–139.

[63] Newnham RE. Properties of Materials: Anisotropy, Symmetry, Structure. New York: Oxford University Press; 2005.

[64] Truesdell C, Noll W. The Non-Linear Field Theories of Mechanics. second ed. Berlin: Springer-Verlag; 1992.

[65] Rooney FJ, Bechtel SE. Constraints, constitutive limits, and instability in finite thermoelasticity. J. Elast. 2004;74(2):109–133.

[66] Gibbs JW. A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Trans. Conn. Acad. Arts Sci. 1873;2:382–404.

[67] Gibbs JW. On the equilibrium of heterogeneous substances. Am. J. Sci. 1878;16(96):441–458.

[68] Bechtel SE, Rooney FJ, Forest MG. Connections between stability, convexity of internal energy, and the second law for compressible Newtonian fluids. ASME J. Appl. Mech. 2005;72(2):299–300.

[69] Pao Y-H, Hutter K. Electrodynamics for moving elastic solids and viscous fluids. Proc. IEEE. 1975;63(7):1011–1021.

[70] Rajagopal KR, Růžička M. Mathematical modeling of electrorheological materials. Cont. Mech. Thermodyn. 2001;13(1):59–78.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset