namedtuple

A namedtuple is a tuple-like object that has fields accessible by attribute lookup as well as being indexable and iterable (it's actually a subclass of tuple). This is sort of a compromise between a full-fledged object and a tuple, and it can be useful in those cases where you don't need the full power of a custom object, but you want your code to be more readable by avoiding weird indexing. Another use case is when there is a chance that items in the tuple need to change their position after refactoring, forcing the coder to refactor also all the logic involved, which can be very tricky. As usual, an example is better than a thousand words (or was it a picture?). Say we are handling data about the left and right eyes of a patient. We save one value for the left eye (position 0) and one for the right eye (position 1) in a regular tuple. Here's how that might be:

>>> vision = (9.5, 8.8)
>>> vision
(9.5, 8.8)
>>> vision[0] # left eye (implicit positional reference)
9.5
>>> vision[1] # right eye (implicit positional reference)
8.8

Now let's pretend we handle vision objects all the time, and at some point the designer decides to enhance them by adding information for the combined vision, so that a vision object stores data in this format: (left eye, combined, right eye).

Do you see the trouble we're in now? We may have a lot of code that depends on vision[0] being the left eye information (which it still is) and vision[1] being the right eye information (which is no longer the case). We have to refactor our code wherever we handle these objects, changing vision[1] to vision[2], and it can be painful. We could have probably approached this a bit better from the beginning, by using a namedtuple. Let me show you what I mean:

>>> from collections import namedtuple
>>> Vision = namedtuple('Vision', ['left', 'right'])
>>> vision = Vision(9.5, 8.8)
>>> vision[0]
9.5
>>> vision.left # same as vision[0], but explicit
9.5
>>> vision.right # same as vision[1], but explicit
8.
8

If within our code, we refer to the left and right eyes using vision.left and vision.right, all we need to do to fix the new design issue is to change our factory and the way we create instances. The rest of the code won't need to change:

>>> Vision = namedtuple('Vision', ['left', 'combined', 'right'])
>>> vision = Vision(9.5, 9.2, 8.8)
>>> vision.left # still correct
9.5
>>> vision.right # still correct (though now is vision[2])
8.8
>>> vision.combined # the new vision[1]
9.2

You can see how convenient it is to refer to those values by name rather than by position. After all, a wise man once wrote, Explicit is better than implicit (can you recall where? Think Zen if you can't...). This example may be a little extreme; of course, it's not likely that our code designer will go for a change like this, but you'd be amazed to see how frequently issues similar to this one happen in a professional environment, and how painful it is to refactor them.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset