Preface to the First Edition

This book grew out of an MBA course in analysis of financial time series that I have been teaching at the University of Chicago since 1999. It also covers materials of Ph.D. courses in time series analysis that I taught over the years. It is an introductory book intended to provide a comprehensive and systematic account of financial econometric models and their application to modeling and prediction of financial time series data. The goals are to learn basic characteristics of financial data, understand the application of financial econometric models, and gain experience in analyzing financial time series.

The book will be useful as a text of time series analysis for MBA students with finance concentration or senior undergraduate and graduate students in business, economics, mathematics, and statistics who are interested in financial econometrics. The book is also a useful reference for researchers and practitioners in business, finance, and insurance facing value at risk calculation, volatility modeling, and analysis of serially correlated data.

The distinctive features of this book include the combination of recent developments in financial econometrics in the econometric and statistical literature. The developments discussed include the timely topics of value at risk (VaR), high-frequency data analysis, and Markov chain Monte Carlo (MCMC) methods. In particular, the book covers some recent results that are yet to appear in academic journals; see Chapter 6 on derivative pricing using jump diffusion with closed-form formulas, Chapter 7 on value at risk calculation using extreme value theory based on a nonhomogeneous two-dimensional Poisson process, and Chapter 9 on multivariate volatility models with time-varying correlations. MCMC methods are introduced because they are powerful and widely applicable in financial econometrics. These methods will be used extensively in the future.

Another distinctive feature of this book is the emphasis on real examples and data analysis. Real financial data are used throughout the book to demonstrate applications of the models and methods discussed. The analysis is carried out by using several computer packages; the SCA (the Scientific Computing Associates) for building linear time series models, the RATS (regression analysis for time series) for estimating volatility models, and the S-Plus for implementing neural networks and obtaining postscript plots. Some commands required to run these packages are given in appendixes of appropriate chapters. In particular, complicated RATS programs used to estimate multivariate volatility models are shown in Appendix A of Chapter 9. Some Fortran programs written by myself and others are used to price simple options, estimate extreme value models, calculate VaR, and carry out Bayesian analysis. Some data sets and programs are accessible from the World Wide Web at http://www.gsb.uchicago.edu/fac/ruey.tsay/teaching/fts.

The book begins with some basic characteristics of financial time series data in Chapter 1. The other chapters are divided into three parts. The first part, consisting of Chapters 2 to 7, focuses on analysis and application of univariate financial time series. The second part of the book covers Chapters 8 and 9 and is concerned with the return series of multiple assets. The final part of the book is Chapter 10, which introduces Bayesian inference in finance via MCMC methods.

A knowledge of basic statistical concepts is needed to fully understand the book. Throughout the chapters, I have provided a brief review of the necessary statistical concepts when they first appear. Even so, a prerequisite in statistics or business statistics that includes probability distributions and linear regression analysis is highly recommended. A knowledge of finance will be helpful in understanding the applications discussed throughout the book. However, readers with advanced background in econometrics and statistics can find interesting and challenging topics in many areas of the book.

An MBA course may consist of Chapters 2 and 3 as a core component, followed by some nonlinear methods (e.g., the neural network of Chapter 4 and the applications discussed in Chapters 5–7 and 10). Readers who are interested in Bayesian inference may start with the first five sections of Chapter 10.

Research in financial time series evolves rapidly and new results continue to appear regularly. Although I have attempted to provide broad coverage, there are many subjects that I do not cover or can only mention in passing.

I sincerely thank my teacher and dear friend, George C. Tiao, for his guidance, encouragement, and deep conviction regarding statistical applications over the years. I am grateful to Steve Quigley, Heather Haselkorn, Leslie Galen, Danielle LaCouriere, and Amy Hendrickson for making the publication of this book possible, to Richard Smith for sending me the estimation program of extreme value theory, to Bonnie K. Ray for helpful comments on several chapters, to Steve Kou for sending me his preprint on jump diffusion models, to Robert E. McCulloch for many years of collaboration on MCMC methods, to many students in my courses on analysis of financial time series for their feedback and inputs, and to Jeffrey Russell and Michael Zhang for insightful discussions concerning analysis of high-frequency financial data. To all these wonderful people I owe a deep sense of gratitude. I am also grateful for the support of the Graduate School of Business, University of Chicago and the National Science Foundation. Finally, my heartfelt thanks to my wife, Teresa, for her continuous support, encouragement, and understanding; to Julie, Richard, and Vicki for bringing me joy and inspirations; and to my parents for their love and care.

R. S. T.

Chicago, Illinois

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset