Bibliography

[1] J. W. Addison, Separation principles in the hierarchies of classical and effective descriptive set theory, Fund. Math. 46 (1959), 123–135.
[2] T. Bartoszyński and H. Judah, Set Theory: On the structure of the real line, A K Peters Ltd., Wellesley, MA, 1995.
[3] J. Barwise, Admissible Sets and Structures, Springer-Verlag, Berlin, 1975.
[4] J. Barwise, Handbook of Mathematical Logic. With the cooperation of H. J. Keisler, K. Kunen, N. Moschovakis, A. S. Troelstra. 2nd printing, Studies in Logic and the Foundations of Mathematics, Vol. 90, Amsterdam, New York, Oxford: North-Holland Publishing Company. XI, 1978.
[5] J. E. Baumgartner, Sacks forcing and the total failure of Martin’s axiom, Topology Appl. 19 (1985), 211–225.
[6] J. E. Baumgartner and R. Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), 271–288.
[7] A. Blass, Complexity of winning strategies, Discrete Math. 3 (1972), 295–300.
[8] G. Boolos and H. Putnam, Degrees of unsolvability of constructible sets of integers, J. Symbolic Logic 33 (1968), 497–513.
[9] G. J. Chaitin, A theory of program size formally identical to information theory, J. Assoc. Comput. Mach. 22 (1975), 329–340.
[10] G. J. Chaitin, Information-theoretic characterizations of recursive infinite strings, Theoret. Comput. Sci. 2 (1976), 45–48.
[11] C. T. Chong, A recursion-theoretic characterization of constructible reals, Bull. London Math. Soc. 9 (1977), 241–244.
[12] C. T. Chong, A. Nies and L. Yu, Lowness of higher randomness notions, Israel J. Math. 166 (2008), 39–60.
[13] C. T. Chong, W. Wang and L. Yu, The strength of the projective Martin conjecture, Fund. Math. 207 (2010), 21–27.
[14] C. T. Chong and L. Yu, Randomness in the higher setting, To appear.
[15] C. T. Chong and L. Yu, Maximal chains in the Turing degrees, J. Symbolic Logic 72 (2007), 1219–1227.
[16] C. T. Chong and L. Yu, Thin maximal antichains in the Turing degrees, Computation and Logic in the Real World, Lecture Notes in Comput. Sci. 4497, pp. 162–168, Springer, Berlin, 2007.
[17] C. T. Chong and L. Yu, A Π11-uniformization principle for reals, Trans. Amer. Math. Soc. 361 (2009), 4233–4245.
[18] P. J. Cohen, Set Theory and the Continuum Hypothesis, W. A. Benjamin, Inc., New York-Amsterdam, 1966.
[19] K. de Leeuw, E. F. Moore, C. E. Shannon and N. Shapiro, Computability by probabilistic machines, Automata Studies, Annals of Mathematics Studies, no. 34, pp. 183–212, Princeton University Press, Princeton, N. J., 1956.
[20] O. Demuth, Remarks on the structure of tt-degrees based on constructive measure theory, Comment. Math. Univ. Carolin. 29 (1988), 233–247.
[21] K. I. Devlin and R. B. Jensen, Marginalia to a theorem of Silver, ISILC Logic Conference (Proc. Internat. Summer Inst. and Logic Colloq., Kiel, 1974), pp. 115–142, Springer, Berlin, 1975. Lecture Notes in Math., Vol. 499.
[22] K. J. Devlin, Constructibility, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1984.
[23] R. Downey, A. Nies, R. Weber and L. Yu, Lowness and Π02 nullsets, J. Symbolic Logic 71 (2006), 1044–1052.
[24] R. G. Downey and D. R. Hirschfeldt, Algorithmic Randomness and Complexity, Theory and Applications of Computability, Springer, New York, 2010.
[25] S. Feferman, Some applications of the notions of forcing and generic sets, Fund. Math. 56 (1964/1965), 325–345.
[26] S. Feferman and C. Spector, Incompleteness along paths in progressions of theories, J. Symbolic Logic 27 (1962), 383–390.
[27] J. N. Y. Franklin, F. Stephan and L. Yu, Relativizations of randomness and genericity notions, Bull. Lond. Math. Soc. 43 (2011), 721–733.
[28] R. M. Friedberg, Two recursively enumerable sets of incomparable degrees of unsolvability (solution of Post’s problem, 1944), Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 236–238.
[29] H. Friedman, One hundred and two problems in mathematical logic, J. Symbolic Logic 40 (1975), 113–129.
[30] H. Friedman, Uniformly defined descending sequences of degrees, J. Symbolic Logic 41 (1976), 363–367.
[31] H. M. Friedman and R. Jensen, Note on admissible ordinals, Lecture Notes in Mathematics 72 (1968), 77–79.
[32] H. Gaifman, Elementary embeddings of models of set-theory and certain subtheories,Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967), Amer. Math. Soc., Providence R.I., 1974, pp. 33–101.
[33] R. O. Gandy, On a problem of Kleene’s, Bull. Amer. Math. Soc. 66 (1960), 501–502.
[34] R. O. Gandy, Proof of Mostowski’s conjecture, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 571–575.
[35] R. O. Gandy, G. Kreisel and W. W. Tait, Set existence. II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 881–882.
[36] R. O. Gandy and G. E. Sacks, A minimal hyperdegree, Fund. Math. 61 (1967), 215–223.
[37] K. Gödel, The Consistency of the Continuum Hypothesis, Annals of Mathematics Studies, no. 3, Princeton University Press, Princeton, N.J., 1940.
[38] N. Greenberg and J. S. Miller, Lowness for Kurtz randomness, J. Symbolic Logic 74 (2009), 665–678.
[39] N. Greenberg, A. Montalbán and T. A. Slaman, The Slaman–Wehner theorem in higher recursion theory, Proc. Amer. Math. Soc. 139 (2011), 1865–1869.
[40] M. J. Groszek and T. A. Slaman, Independence results on the global structure of the Turing degrees, Trans. Amer. Math. Soc. 277 (1983), 579–588.
[41] M. J. Groszek and T. A. Slaman, A basis theorem for perfect sets, Bull. Symbolic Logic 4 (1998), 204–209.
[42] D. Guaspari, A note on the Kondo–Addison theorem, J. Symbolic Logic 39 (1974), 567–570.
[43] L. A. Harrington, McLaughlin’s Conjecture, Handwritten notes (1976).
[44] L. A. Harrington, Long projective wellorderings, Annals of Mathematical Logic 12 (1977), 1–24.
[45] L. A. Harrington, Analytic determinacy and 0, J. Symbolic Logic 43 (1978), 685–693.
[46] L. A. Harrington and A. S. Kechris, A basis result for Σ03 sets of reals with an application to minimal covers, Proc. Amer. Math. Soc. 53 (1975), 445–448.
[47] P. G. Hinman, Recursion-theoretic Hierarchies, Perspectives in Mathematical Logic,Springer-Verlag, Berlin, 1978.
[48] D. R. Hirschfeldt, A. Nies and F. Stephan, Using random sets as oracles, J. Lond. Math. Soc. (2) 75 (2007), 610–622.
[49] G. Hjorth, Continuous Images of Coanalytic sets, Logic Colloquium ’98 (Prague), Lecture Notes in Logic 13, Assoc. Symbol. Logic, Urbana, IL, 2000, 226–237.
[50] G. Hjorth, An argument of due to Leo Harrington, Online draft (2004).
[51] G. Hjorth and A. Nies, Randomness via effective descriptive set theory, J. Lond. Math. Soc. (2) 75 (2007), 495–508.
[52] W. Hodges, Model Theory, Encyclopedia of Mathematics and its Applications 42, Cambridge University Press, Cambridge, 1993.
[53] T. Jech, Set Theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
[54] R. B. Jensen, Admissible sets, Online draft (1969).
[55] R. B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229–308; erratum, ibid. 4 (1972), 443.
[56] C. G. Jockusch, Jr., Recursiveness of initial segments of Kleene’s O, Fund. Math. 87 (1975), 161–167.
[57] C. G. Jockusch, Jr. and R. A. Shore, Pseudojump operators. II. Transfinite iterations, hierarchies and minimal covers, J. Symbolic Logic 49 (1984), 1205–1236.
[58] C. G. Jockusch, Jr. and S. G. Simpson, A degree-theoretic definition of the ramified analytical hierarchy, Ann. Math. Logic 10 (1976), 1–32.
[59] C. G. Jockusch, Jr. and R. I. Soare, Minimal covers and arithmetical sets, Proc. Amer. Math. Soc. 25 (1970), 856–859.
[60] C. G. Jockusch, Jr. and R. I. Soare, Π01 classes and degrees of theories, Trans. Amer. Math. Soc. 173 (1972), 33–56.
[61] B. Jónsson, On the representation of lattices, Math. Scand 1 (1953), 193–206.
[62] A. Kanamori and D. Pincus, Does GCH imply AC locally?, Paul Erdős and his mathematics, II (Budapest, 1999), Bolyai Soc. Math. Stud. 11, pp. 413–426, János Bolyai Math. Soc., Budapest, 2002.
[63] A. S. Kechris, Measure and category in effective descriptive set theory, Ann. Math. Logic 5 (1972/73), 337–384.
[64] A. S. Kechris, The theory of countable analytical sets, Trans. Amer. Math. Soc. 202 (1975), 259–297.
[65] A. S. Kechris, D. A. Martin and R. M. Solovay, Introduction to Q-theory, Cabal Seminar 79–81, Lecture Notes in Math. 1019, pp. 199–282, Springer, Berlin, 1983.
[66] B. Kjos-Hanssen, J. Miller and R. Solomon, Lowness notions, measure and dominations, J. Lond. Math. Soc. 85 (2012), 869–888.
[67] B. Kjos-Hanssen, A. Nies and F. Stephan, Lowness for the class of Schnorr random reals, SIAM J. Comput. 35 (2005), 647–657.
[68] B. Kjos-Hanssen, A. Nies, F. Stephan and L. Yu, Higher Kurtz randomness, Ann. Pure Appl. Logic 161 (2010), 1280–1290.
[69] S. C. Kleene, Arithmetical predicates and function quantifiers, Trans. Amer. Math. Soc. 79 (1955), 312–340.
[70] S. C. Kleene, Hierarchies of number-theoretic predicates, Bull. Amer. Math. Soc. 61 (1955), 193–213.
[71] S. C. Kleene, On the forms of the predicates in the theory of constructive ordinals. II, Amer. J. Math. 77 (1955), 405–428.
[72] S. C. Kleene, Quantification of number-theoretic functions, Compositio Math. 14 (1959), 23–40.
[73] A. N. Kolmogorov, Three approaches to the quantitative definition of information, Internat. Comput. J. Math. 2 (1968), 157–168.
[74] M. Kondô, Sur l’uniformisation des complémentaires analytiques et les ensembles projectifs de la seconde classe, Japan. J. Math. 15 (1938), 197–230 (French).
[75] S. Kripke, Transfinite recursions on admissible ordinals, I, II, J. Symbolic Logic 29 (1964), 161–162.
[76] A. Kučera, Measure, Π01-classes and complete extensions of PA, Recursion Theory Week (Oberwolfach, 1984), Lecture Notes in Math. 1141, pp. 245–259, Springer, Berlin, 1985.
[77] A. Kučera and T. A. Slaman, Low upper bounds of ideals, J. Symbolic Logic 74 (2009), 517–534.
[78] K. Kunen, Set Theory: An introduction to independence proofs, Studies in Logic and the Foundations of Mathematics 102, North-Holland Publishing Co., Amsterdam, 1980.
[79] S. Kurtz, Randomness and genericity in the degrees of unsolvability, Ph.D. Dissertation, University of Illinois, Urbana, 1981.
[80] A. H. Lachlan, Uniform enumeration operations, J. Symbolic Logic 40 (1975), 401–409.
[81] M. Lerman, Initial segments of the degrees of unsolvability, Ann. of Math. (2) 93 (1971), 365–389.
[82] M. Lerman, Degrees of Unsolvability: Local and global theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1983.
[83] L. A. Levin, Laws on the conservation (zero increase) of information, and questions on the foundations of probability theory, Problemy Peredači Informacii 10 (1974), 30–35.
[84] A. Lévy, Definability in axiomatic set theory. I, Logic, Methodology and Philos. Sci. (Proc. 1964 Internat. Congr.), pp. 127–151, North-Holland, Amsterdam, 1965.
[85] A. Louveau, A separation theorem for Σ11 sets, Trans. Amer. Math. Soc. 260 (1980), 363–378.
[86] N. Lusin, Sur la classification de M. Baire, C. R. 164 (1917), 91–94 (French).
[87] R. Mansfield, Perfect subsets of definable sets of real numbers, Pacific J. Math. 35 (1970), 451–457.
[88] R. Mansfield and G. Weitkamp, Recursive Aspects of Descriptive Set Theory, Oxford Logic Guides 11, The Clarendon Press Oxford University Press, New York, 1985, With a chapter by Stephen Simpson.
[89] W. Markwald, Zur Theorie der konstruktiven Wohlordnungen, Math. Ann. 127 (1954), 135–149.
[90] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), 143–178.
[91] D. A. Martin, The axiom of determinateness and reduction principles in the analytical hierarchy, Bull. Amer. Math. Soc. 74 (1968), 687–689.
[92] D. A. Martin, Measurable cardinals and analytic games, Fund. Math. 66 (1969/1970), 287–291.
[93] D. A. Martin, Borel determinacy, Ann. of Math. (2) 102 (1975), 363–371.
[94] D. A. Martin, Proof of a conjecture of Friedman, Proc. Amer. Math. Soc. 55 (1976), 129.
[95] D. A. Martin and J. R. Steel, A proof of projective determinacy, J. Amer. Math. Soc. 2 (1989), 71–125.
[96] P. Martin-Löf, The definition of random sequences, Information and Control 9 (1966), 602–619.
[97] P. Martin-Löf, On the notion of randomness, Intuitionism and Proof Theory (Proc. Conf., Buffalo, N.Y., 1968), pp. 73–78, North-Holland, Amsterdam, 1970.
[98] A. R. D. Mathias, Surrealist landscape with figures (a survey of recent results in set theory), Period. Math. Hungar. 10 (1979), 109–175.
[99] W. Merkle, J. S. Miller, A. Nies, J. Reimann and F. Stephan, Kolmogorov–Loveland randomness and stochasticity, Ann. Pure Appl. Logic 138 (2006), 183–210.
[100] A. W. Miller, Infinite combinatorics and definability, Ann. Pure Appl. Logic 41 (1989), 179–203.
[101] J. S. Miller, Every 2-random real is Kolmogorov random, J. Symbolic Logic 69 (2004).
[102] J. S. Miller, The K-degrees, low for K-degrees, and weakly low for K sets, Notre Dame J. Form. Log. 50 (2009), 381–391 (2010).
[103] J. S. Miller and L. Yu, On initial segment complexity and degrees of randomness, Trans. Amer. Math. Soc. 360 (2008), 3193–3210.
[104] J. S. Miller and L. Yu, Oscillation in the initial segment complexity of random reals, Adv. Math. 226 (2011), 4816–4840.
[105] B. Monin, Higher randomness and forcing with closed sets, in: 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014) (E. W. Mayr and N. Portier, eds.), Leibniz International Proceedings in Informatics (LIPIcs) 25, pp. 566–577, Schloss Dagstuhl, Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2014.
[106] Y. N. Moschovakis, Elementary Induction on Abstract Structures, Studies in Logic and the Foundations of Mathematics, Vol. 77, North-Holland Publishing Co., Amsterdam, 1974.
[107] Y. N. Moschovakis, Descriptive Set Theory, second ed, Mathematical Surveys and Monographs 155, American Mathematical Society, Providence, RI, 2009.
[108] A. Mostowski, An undecidable arithmetical statement, Fund. Math. 36 (1949), 143–164.
[109] A. A. Mučnik, On the unsolvability of the problem of reducibility in the theory of algorithms, Dokl. Akad. Nauk SSSR (N.S.) 108 (1956), 194–197.
[110] A. Nies, Lowness properties and randomness, Adv. Math. 197 (2005), 274–305.
[111] A. Nies, Computability and Randomness, Oxford Logic Guides 51, Oxford University Press, Oxford, 2009.
[112] A. Nies, F. Stephan and S. A. Terwijn, Randomness, relativization and Turing degrees, J. Symbolic Logic 70 (2005), 515–535.
[113] R. Platek, Foundations of recursion theory, Ph.D thesis, Stanford University, 1966.
[114] D. B. Posner and R. W. Robinson, Degrees joining to 0 ', J. Symbolic Logic 46 (1981), 714–722.
[115] H. Putnam, A note on constructible sets of integers, Notre Dame J. Formal Logic 4 (1963), 270–273.
[116] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill Book Co., New York, 1967.
[117] G. E. Sacks, Degrees of Unsolvability, Princeton University Press, Princeton, N.J., 1963.
[118] G. E. Sacks, Post’s problem, admissible ordinals, and regularity, Trans. Amer. Math. Soc. 124 (1966), 1–23.
[119] G. E. Sacks, On a theorem of Lachlan and Martin, Proc. Amer. Math. Soc. 18 (1967), 140–141.
[120] G. E. Sacks, Measure-theoretic uniformity in recursion theory and set theory, Trans. Amer. Math. Soc. 142 (1969), 381–420.
[121] G. E. Sacks, Forcing with Perfect Closed Sets, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), pp. 331–355, Amer. Math. Soc., Providence, R.I., 1971.
[122] G. E. Sacks, Countable admissible ordinals and hyperdegrees, Adv. Math 19 (1976), 213–262.
[123] G. E. Sacks, Higher Recursion Theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1990.
[124] G. E. Sacks, Selected Logic Papers, World Scientific Series in 20th Century Mathematics 6, World Scientific Publishing Co., Inc., River Edge, NJ, 1999.
[125] C.-P. Schnorr, A unified approach to the definition of random sequences, Math. Systems Theory 5 (1971), 246–258.
[126] C.-P. Schnorr, Process complexity and effective random tests, J. Comput. System Sci. 7 (1973), 376–388, Fourth Annual ACM Symposium on the Theory of Computing (Denver, Colo., 1972).
[127] C.-P. Schnorr, Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie, Lecture Notes in Mathematics, Vol. 218, Springer-Verlag, Berlin, 1971.
[128] S. Shelah, Can you take Solovay’s inaccessible away?, Israel J. Math. 48 (1984), 1–47.
[129] J. R. Shoenfield, The problem of predicativity, Essays on the Foundations of Mathematics, 132–139, Magnes Press, Hebrew Univ., Jerusalem, 1961.
[130] J. R. Shoenfield, Unramified forcing, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), pp. 357–381, Amer. Math. Soc., Providence, R.I., 1971.
[131] R. A. Shore, On the ∀∃-sentences of α-recursion theory, Generalized Recursion Theory, II (Proc. Second Sympos., Univ. Oslo, Oslo, 1977), Stud. Logic Foundations Math. 94, 331–353, North-Holland, Amsterdam, 1978.
[132] R. A. Shore, Finitely generated codings and the degrees r.e. in a degree d , Proc. Amer. Math. Soc. 84 (1982), 256–263.
[133] R. A. Shore, Rigidity and biinterpretability in the hyperdegrees, Computational Prospects of Infinity. Part II. Presented talks, Lecture Notes Ser. Inst. Math. Sci. Natl. Univ. Singapore 15, pp. 299–312, World Sci. Publ., Hackensack, NJ, 2008.
[134] R. A. Shore and T. A. Slaman, Defining the Turing jump, Math.Res.Lett. 6 (1999), 711–722.
[135] W. Sierpiński, Sur une classe d’ensembles., Fundamenta 7 (1925), 237–243 (French).
[136] W. Sierpiński, L’hypothèse généralisée du continu et l’axiome du choix, Fund. Math. 34 (1947), 1–5.
[137] J. H. Silver, Some applications of model theory in set theory, Ann. Math. Logic 3 (1971), 45–110.
[138] S. G. Simpson, Minimal covers and hyperdegrees, Trans. Amer. Math. Soc. 209 (1975), 45–64.
[139] S. G. Simpson, First-order theory of the degrees of recursive unsolvability, Ann. of Math. (2) 105 (1977), 121–139.
[140] T. A. Slaman, On a question of Sierpiński, Fund. Math. 159 (1999), 153–159.
[141] T. A. Slaman, Global properties of the Turing degrees and the Turing jump, Computational Prospects of Infinity. Part I. Tutorials, Lecture Notes Ser. Inst. Math. Sci. Natl. Univ. Singapore 14, pp. 83–101, World Sci. Publ., Hackensack, NJ, 2008.
[142] T. A. Slaman and J. R. Steel, Definable functions on degrees, Cabal Seminar 81–85,Lecture Notes in Math. 1333, pp. 37–55, Springer, Berlin, 1988.
[143] T. A. Slaman and W. H. Woodin, Definability in the Turing degrees, Illinois J. Math. 30 (1986), 320–334.
[144] T. A. Slaman and W. H. Woodin, Definability of degrees structures, Online draft (2005).
[145] R. M. Smullyan, Gödel’s Incompleteness Theorems, Oxford Logic Guides 19, The Clarendon Press Oxford University Press, New York, 1992.
[146] R. J. Solomonoff, A formal theory of inductive inference, Information and Control 7 (1964), 1–22, 224–254.
[147] R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin’s problem, Ann. of Math. (2) 94 (1971), 201–245.
[148] R. M. Solovay, A nonconstructible Δ13 set of integers, Trans. Amer. Math. Soc. 127 (1967), 50–75.
[149] R. M. Solovay, On the cardinality of Σ12 sets of reals, Essays on the Foundations of Mathematics (Symposium Commemorating Kurt Gödel, Columbus, Ohio, 1966), pp. 58–73, Springer, New York, 1969.
[150] R. M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56.
[151] R. M. Solovay, Draft of a paper (or series of papers) on Chaitin’s work, (1975), Unpublished notes, 215 pages.
[152] R. M. Solovay, Hyperarithmetically encodable sets, Trans. Amer. Math. Soc. 239 (1978), 99–122.
[153] C. Spector, Recursive well-orderings, J. Symb. Logic 20 (1955), 151–163.
[154] C. Spector, On degrees of recursive unsolvability, Ann. of Math. (2) 64 (1956), 581–592.
[155] C. Spector, Measure-theoretic construction of incomparable hyperdegrees, J. Symb. Logic 23 (1958), 280–288.
[156] C. Spector, Hyperarithmetical quantifiers, Fund. Math. 48 (1959/1960), 313–320.
[157] J. R. Steel, Descending sequences of degrees, J. Symbolic Logic 40 (1975), 59–61.
[158] J. R. Steel, Forcing with tagged trees, Ann. Math. Logic 15 (1978), 55–74.
[159] J. R. Steel, A classification of jump operators, J. Symbolic Logic 47 (1982), 347–358.
[160] F. Stephan and L. Yu, Lowness for weakly 1-generic and Kurtz-random, Theory and Applications of Models of Computation, Lecture Notes in Comput. Sci. 3959, pp. 756–764, Springer, Berlin, 2006.
[161] J. Stern, Some measure theoretic results in effective descriptive set theory, Israel J. Math. 20 (1975), 97–110.
[162] M. Suslin, Sur une definition des ensembles measurables B sans nombres transinis, Compts rendus Acad. Science 164 (1917), 88–91.
[163] S. A. Terwijn and D. Zambella, Computational randomness and lowness, J. Symbolic Logic 66 (2001), 1199–1205.
[164] F. van Engelen, A. W. Miller and J. Steel, Rigid Borel sets and better quasi-order theory, Logic and Combinatorics (Arcata, Calif., 1985), Contemp. Math. 65, pp. 199–222, Amer. Math. Soc., Providence, RI, 1987.
[165] M. van Lambalgen, The axiomatization of randomness, J. Symbolic Logic 55 (1990), 1143–1167.
[166] B. Velickovic and W. H. Woodin, Complexity of reals in inner models of set theory, Ann. Pure Appl. Logic 92 (1998), 283–295.
[167] W. Wang, Martin’s axiom and embeddings of upper semi-lattices into the Turing degrees, Ann. Pure Appl. Logic 161 (2010), 1291–1298.
[168] W. Wang, L. Wu and L. Yu, Cofinal maximal chains in the Turing degrees, Proc. Amer. Math. Soc. 142 (2014), 1391–1398.
[169] W. H. Woodin, A tt version of the Posner–Robinson theorem, Computational Prospects of Infinity. Part II. Presented talks, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 15, 355–392, World Sci. Publ., Hackensack, NJ, 2008.
[170] L. Yu, When van Lambalgen’s theorem fails, Proc. Amer. Math. Soc. 135 (2007), 861–864.
[171] L. Yu, Descriptive set theoretical complexity of randomness notions, Fund. Math. 215 (2011), 219–231.
[172] L. Yu, A new proof of Friedman’s conjecture, Bull. Symbolic Logic 17 (2011), 455–461.
[173] L. Yu, D. Ding and R. Downey, The Kolmogorov complexity of random reals, Ann. Pure Appl. Logic 129 (2004), 163–180.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset