3.1 Characteristics of Volatility

A special feature of stock volatility is that it is not directly observable. For example, consider the daily log returns of IBM stock. The daily volatility is not directly observable from the return data because there is only one observation in a trading day. If intraday data of the stock, such as 10-minute returns, are available, then one can estimate the daily volatility. See Section 3.15. The accuracy of such an estimate deserves a careful study, however. For example, stock volatility consists of intraday volatility and overnight volatility with the latter denoting variation between trading days. The high-frequency intraday returns contain only very limited information about the overnight volatility. The unobservability of volatility makes it difficult to evaluate the forecasting performance of conditional heteroscedastic models. We discuss this issue later.

In options markets, if one accepts the idea that the prices are governed by an econometric model such as the Black–Scholes formula, then one can use the price to obtain the “implied” volatility. Yet this approach is often criticized for using a specific model, which is based on some assumptions that might not hold in practice. For instance, from the observed prices of a European call option, one can use the Black–Scholes formula in Eq. (3.1) to deduce the conditional standard deviation σt. The resulting value of σt is called the implied volatility of the underlying stock. However, this implied volatility is derived under the assumption that the price of the underlying asset follows a geometric Brownian motion. It might be different from the actual volatility. Experience shows that implied volatility of an asset return tends to be larger than that obtained by using a GARCH type of volatility model. This might be due to the risk premium for volatility or to the way daily returns are calculated. The VIX of CBOE is an implied volatility.

Although volatility is not directly observable, it has some characteristics that are commonly seen in asset returns. First, there exist volatility clusters (i.e., volatility may be high for certain time periods and low for other periods). Second, volatility evolves over time in a continuous manner—that is, volatility jumps are rare. Third, volatility does not diverge to infinity—that is, volatility varies within some fixed range. Statistically speaking, this means that volatility is often stationary. Fourth, volatility seems to react differently to a big price increase or a big price drop, referred to as the leverage effect. These properties play an important role in the development of volatility models. Some volatility models were proposed specifically to correct the weaknesses of the existing ones for their inability to capture the characteristics mentioned earlier. For example, the EGARCH model was developed to capture the asymmetry in volatility induced by big “positive” and “negative” asset returns.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset