Contents

Foreword

Preface

Author

  1. Fundamentals of Electric Field

1.1       Introduction

1.2       Electric Charge

1.3       Electric Fieldlines

1.4       Coulomb’s Law

1.4.1       Coulomb’s Constant

1.4.2       Comparison between Electrostatic and Gravitational Forces

1.4.3       Effect of Departure from Electrical Neutrality

1.4.4       Force due to a System of Discrete Charges

1.4.5       Force due to Continuous Charge Distribution

1.5       Electric Field Intensity

1.6       Electric Flux and Electric Flux Density

1.7       Electric Potential

1.7.1       Equipotential vis-à-vis Electric Fieldline

1.7.2       Electric Potential of the Earth Surface

1.7.3       Electric Potential Gradient

1.7.4       Electric Potential Gradient and Electric Field Intensity

1.8       Field due to Point Charge

1.9       Field due to a Uniformly Charged Line

1.10     Field due to a Uniformly Charged Ring

1.11     Field due to a Uniformly Charged Disc

Objective Type Questions

Bibliography

  2. Gauss’s Law and Related Topics

2.1       Introduction

2.2       Useful Definitions and Integrals

2.2.1       Electric Flux through a Surface

2.2.2       Charge within a Closed Volume

2.2.3       Solid Angle

2.3       Integral Form of Gauss’s Law

2.3.1       Gaussian Surface

2.4       Differential Form of Gauss’s Law

2.5       Divergence Theorem

2.6       Poisson’s and Laplace’s Equations

2.7       Field due to a Continuous Distribution of Charge

2.8       Steps to Solve Problems Using Gauss’s Law

Objective Type Questions

  3. Orthogonal Coordinate Systems

3.1       Basic Concepts

3.1.1       Unit Vector

3.1.2       Right-Handed Convention

3.1.3       Differential Distance and Metric Coefficient

3.1.4       Choice of Origin

3.2       Cartesian Coordinate System

3.3       Cylindrical Coordinate System

3.4       Spherical Coordinate System

3.5       Generalized Orthogonal Curvilinear Coordinate System

3.6       Vector Operations

3.6.1       Gradient

3.6.2       Del Operator

3.6.3       Divergence

3.6.4       Laplacian

3.6.5       Curl

3.6.5.1     Curl of Electric Field

Objective Type Questions

  4. Single-Dielectric Configurations

4.1       Introduction

4.2       Displacement Current

4.3       Parallel Plate Capacitor

4.3.1       Energy Stored in a Parallel Plate Capacitor

4.4       Energy Stored in Electric Field

4.5       Two Concentric Spheres with Homogeneous Dielectric

4.6       Two Co-Axial Cylinders with Homogeneous Dielectric

4.7       Field Factor

Objective Type Questions

  5. Dielectric Polarization

5.1       Introduction

5.2       Field due to an Electric Dipole and Polarization Vector

5.2.1       Electric Dipole and Dipole Moment

5.2.2       Field due to an Electric Dipole

5.2.3       Polarization Vector

5.3       Polarizability

5.3.1       Non-Polar and Polar Molecules

5.3.2       Electronic Polarizability of an Atom

5.3.3       Types of Polarizability

5.3.3.1     Electronic Polarizability

5.3.3.2     Ionic Polarizability

5.3.3.3     Orientational or Dipolar Polarizability

5.3.3.4     Interfacial Polarizability

5.4       Field due to a Polarized Dielectric

5.4.1       Bound Charge Densities of Polarized Dielectric

5.4.1.1     Bound Volume Charge Density

5.4.1.2     Bound Surface Charge Density

5.4.2       Macroscopic Field

5.4.3       Field due to a Narrow Column of Uniformly Polarized Dielectric

5.4.4       Field within a Sphere Having Uniformly Polarized Dielectric

5.4.5       Sphere Having Constant Radial Distribution of Polarization

5.5       Electric Displacement Vector

5.5.1       Electric Susceptibility

5.5.2       Dielectric Permittivity

5.5.3       Relationship between Free Charge Density and Bound Volume Charge Density

5.6       Classification of Dielectrics

5.6.1       Molecular Polarizability of Linear Dielectric

5.6.2       Piezoelectric Materials

5.6.3       Ferroelectric Materials

5.6.4       Electrets

5.7       Frequency Dependence of Polarizabilities

5.8       Mass-Spring Model of Fields in Dielectrics

5.8.1       Dielectric Permittivity from Mass-Spring Model

5.9       Dielectric Anisotropy

5.9.1       Tensor of Rank

5.9.2       Permittivity Tensor

Objective Type Questions

  6. Electrostatic Boundary Conditions

6.1       Introduction

6.2       Boundary Conditions between a Perfect Conductor and a Dielectric

6.2.1       Boundary Condition for Normal Component of Electric Flux Density

6.2.2       Boundary Condition for Tangential Component of Electric Field Intensity

6.2.3       Field Just Off the Conductor Surface

6.3       Boundary Conditions between Two Different Dielectric Media

6.3.1       Boundary Condition for Normal Component of Electric Flux Density

6.3.2       Boundary Condition for Tangential Component of Electric Field Intensity

6.3.3       Boundary Condition for Charge-Free Dielectric – Dielectric Interface

Objective Type Questions

  7. Multi-Dielectric Configurations

7.1       Introduction

7.2       Parallel Plate Capacitor

7.2.1       Dielectrics in Parallel between the Plates

7.2.2       Dielectrics in Series between the Plates

7.2.3       Void in Insulation

7.2.4       Impregnation of Porous Solid Insulation

7.3       Co-Axial Cylindrical Configurations

Objective Type Questions

  8. Electrostatic Pressures on Boundary Surfaces

8.1       Introduction

8.2       Mechanical Pressure on a Conductor–Dielectric Boundary

8.2.1       Electric Field Intensity Exactly on the Conductor Surface

8.2.2       Electrostatic Forces on the Plates of a Parallel Plate Capacitor

8.3       Mechanical Pressure on a Dielectric–Dielectric Boundary

8.3.1       Mechanical Pressure due to Dielectric Polarization

8.3.2       Mechanical Pressure on Surface Film at the Dielectric–Dielectric Boundary

8.3.3       Total Mechanical Pressure on the Dielectric– Dielectric Boundary

8.4       Two Dielectric Media in Series between a Parallel Plate Capacitor

8.5       Two Dielectric Media in Parallel between a Parallel Plate Capacitor

8.5.1       Electrostatic Pump

Objective Type Questions

  9. Method of Images

9.1       Introduction

9.2       Image of a Point Charge with Respect to an Infinitely Long Conducting Plane

9.2.1       Point Charge between Two Conducting Planes

9.3       Image of a Point Charge with Respect to a Grounded Conducting Sphere

9.3.1       Method of Successive Images

9.3.2       Conducting Sphere in a Uniform Field

9.4       Image of an Infinitely Long Line Charge with Respect to an Infinitely Long Conducting Plane

9.5       Two Infinitely Long Parallel Cylinders

9.6       Salient Features of Method of Images

Objective Type Questions

10. Sphere or Cylinder in Uniform External Field

10.1     Introduction

10.2     Sphere in Uniform External Field

10.2.1     Conducting Sphere in Uniform Field

10.2.2     Dielectric Sphere in Uniform Field

10.3     Cylinder in Uniform External Field

10.3.1     Conducting Cylinder in Uniform Field

10.3.2     Dielectric Cylinder in Uniform Field

Objective Type Questions

11. Conformal Mapping

11.1     Introduction

11.2     Basic Theory of Conformal Mapping

11.2.1     Mapping of Shapes

11.2.2     Preservation of Angles in Conformal Mapping

11.3     Concept of Complex Potential

11.4     Procedural Steps in Solving Problems Using Conformal Mapping

11.5     Applications of Conformal Mapping in Electrostatic Potential Problems

11.5.1     Conformal Mapping of Co-Axial Cylinders

11.5.2     Conformal Mapping of Non-Co-Axial Cylinders

11.5.3     Conformal Mapping of Unequal Parallel Cylinders

11.5.3.1   Conformal Mapping of Equal Parallel Cylinders

Objective Type Questions

12. Graphical Field Plotting

12.1     Introduction

12.2     Experimental Field Mapping256

12.3     Field Mapping Using Curvilinear Squares

12.3.1     Foundations of Field Mapping

12.3.2     Sketching of Curvilinear Squares

12.3.3     Construction of Curvilinear Square Field Map

12.3.4     Capacitance Calculation from Field Map

12.4     Field Mapping in Multi-Dielectric Media

12.5     Field Mapping in Axi-Symmetric Configuration

Objective Type Questions

Bibliography

13. Numerical Computation of Electric Field

13.1     Introduction

13.2     Methods of Determination of Electric Field Distribution

13.3     Uniqueness Theorem

13.4     Procedural Steps in Numerical Electric Field Computation

Objective Type Questions

14. Numerical Computation of High-Voltage Field by Finite Difference Method

14.1     Introduction

14.2     FDM Equations in 3D System for Single-Dielectric Medium

14.3     FDM Equations in Axi-Symmetric System for Single-Dielectric Medium

14.3.1     FDM Equation for a Node Lying Away from the Axis of Symmetry

14.3.2     FDM Equation for a Node Lying on the Axis of Symmetry

14.4     FDM Equations in 3D System for Multi-Dielectric Media

14.5     FDM Equations in Axi-Symmetric System for Multi-Dielectric Media

14.5.1     For Series Dielectric Media

14.5.1.1   For the Node on the Dielectric Interface Lying Away from the Axis of Symmetry

14.5.1.2   For the Node on the Dielectric Interface Lying on the Axis of Symmetry

14.5.2     For Parallel Dielectric Media

14.6     Simulation Details

14.6.1     Discretization

14.6.2     Simulation of an Unbounded Field Region

14.6.3     Accuracy Criteria

14.6.4     System of FDM Equation

14.7     FDM Examples

14.7.1     Transmission Line Parallel Conductors

14.7.2     Post-Type Insulator

14.7.3     Disc-Type Insulator

Objective Type Questions

Bibliography

15. Numerical Computation of High-Voltage Field by Finite Element Method

15.1     Introduction

15.2     Basics of FEM

15.3     Procedural Steps in FEM

15.4     Variational Approach towards FEM Formulation

15.4.1     FEM Formulation in a 2D System with Single-Dielectric Medium

15.4.2     FEM Formulation in 2D System with Multi-Dielectric Media

15.4.3     FEM Formulation in Axi-Symmetric System

15.4.4     Shape Function, Global and Natural Coordinates

15.4.5     Derivation of Field Variables Using Natural Coordinates

15.4.6     Other Types of Elements for 2D and Axi-Symmetric Systems

15.4.6.1   Quadratic Triangular Element

15.4.6.2   Linear Quadrilateral Element

15.4.6.3   Quadratic Quadrilateral Element

15.4.7     FEM Formulation in 3D System

15.4.7.1   Natural Coordinates of Linear Tetrahedral Element

15.4.7.2   Linear Hexahedral Element

15.4.7.3   Isoparametric Element

15.4.8     Mapping of Finite Elements

15.5     Features of Discretization in FEM

15.5.1     Refinement of FEM Mesh

15.5.2     Acceptability of Element after Discretization

15.6     Solution of System of Equations in FEM

15.6.1     Sources of Error in FEM

15.7     Advantages of FEM

15.7.1     Using FEM in the Design Cycle

15.8     FEM Examples

15.8.1     Circuit Breaker Contacts

15.8.2     Cylindrical Insulator

15.8.3     Porcelain Bushing of Transformer

Objective Type Questions

Bibliography

16. Numerical Computation of High-Voltage Field by Charge Simulation Method

16.1     Introduction

16.2     CSM Formulation for Single-Dielectric Medium

16.2.1     Formulation for Floating Potential Electrodes

16.3     CSM Formulation for Multi-Dielectric Media

16.4     Types of Fictitious Charges

16.4.1     Point Charge

16.4.2     Infinite Length Line Charge

16.4.3     Finite Length Line Charge

16.4.4     Ring Charge

16.4.5     Arbitrary Line Segment Charge

16.4.6     Arbitrary Ring Segment Charge

16.5     CSM with Complex Fictitious Charges

16.6     Capacitive-Resistive Field Computation by CSM

16.6.1     Capacitive-Resistive Field Computation Including Volume Resistance

16.6.2     Capacitive-Resistive Field Computation Including Surface Resistance

16.7     Field Computation by CSM under Transient Voltage

16.7.1     Transient Field Computation Including Volume Resistance

16.7.2     Transient Field Computation Including Surface Resistance

16.8     Accuracy Criteria

16.8.1     Factors Affecting Simulation Accuracy

16.8.2     Solution of System of Equations in CSM

16.9     Other Development in CSM

16.9.1     Least Square Error CSM

16.9.2     Optimized CSM

16.9.3     Region-Oriented CSM

16.10   Comparison of CSM with FEM

16.11   Hybrid Method Involving CSM and FEM

16.12   CSM Examples

16.12.1   Three-Core Belted Cable

16.12.2   Sphere Gap

16.12.3   Single-Core Cable Termination with Stress Cone

16.12.4   Post-Type Insulator

16.12.5   Asymmetric Sphere Gaps

Objective Type Questions

Bibliography

17. Numerical Computation of High-Voltage Field by Surface Charge Simulation Method

17.1     Introduction

17.2     SCSM Formulation for Single-Dielectric Medium

17.3     Surface Charge Elements in 2D and Axi-Symmetric Configurations

17.3.1     Straight Line Element

17.3.2     Elliptic Arc Element

17.3.3     Contribution of Nodal Charge Densities to Coefficient Matrix

17.3.4     Method of Integration over a Surface Charge Element

17.3.5     Electric Field Intensity Exactly on the Electrode Surface

17.4     SCSM Formulation for Multi-Dielectric Media

17.5     SCSM Formulation in 3D System

17.6     Capacitive-Resistive Field Computation by SCSM

17.6.1     Capacitive-Resistive Field Computation in 2D and Axi-Symmetric Systems

17.6.2     Capacitive-Resistive Field Computation in 3D System

17.7     SCSM Examples

17.7.1     Cylinder Supported on Wedge

17.7.2     Conical Insulator in Gas-Insulated System

17.7.3     Metal Oxide Surge Arrester

17.7.4     Condenser Bushing of Transformer

Objective Type Questions

Bibliography

18. Numerical Computation of Electric Field in High-Voltage System – Case Studies

18.1     Introduction

18.2     Benchmark Models for Validation

18.2.1     Cylinder in Uniform External Field

18.2.2     Sphere in Uniform External Field

18.2.3     Dielectric Sphere Coated with a Thin Conducting Layer in Uniform External Field

18.3     Electric Field Distribution in the Cable Termination

18.4     Electric Field Distribution around a Post-Type Insulator

18.4.1     Effect of Uniform Surface Pollution

18.4.2     Effect of Partial Surface Pollution

18.4.3     Effect of Dry Band

18.4.4     Impulse Field Distribution

18.5     Electric Field Distribution in a Condenser Bushing

18.6     Electric Field Distribution around a Gas-Insulated Substation Spacer

Objective Type Questions

Bibliography

19. Electric Field Optimization

19.1     Introduction

19.2     Review of Published Works

19.2.1     Conventional Contour Correction Techniques for Electrode and Insulator Optimization

19.2.2     Optimization of High-Voltage System Elements

19.2.3     Soft-Computing Techniques for Electrode and Insulator Optimization

19.2.4     Optimization of Switchgear Elements

19.2.5     Optimization of Bushing Elements

19.2.6     User-Friendly Optimization Environment

19.3     Field Optimization Using Contour Correction Techniques

19.3.1     Insulator Contour Optimization by Simultaneous Displacement

19.3.1.1   Contour Correction Keeping Potential Difference Constant

19.3.1.2   Contour Correction Keeping Distance Constant

19.3.2     Electrode and Insulator Contour Correction with Approximation of Corrected Contour

19.3.3     Parametric Optimization of Insulator Profile

19.4     ANN-Based Optimization of Electrode and Insulator Contours

19.4.1     ANN-Based Optimization of Electrode Contour

19.4.2     ANN-Based Optimization of Insulator Contour

19.5     ANN-Aided Optimization of 3D Electrode–Insulator Assembly

Objective Type Questions

References

Index

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset